Commit Graph

257 Commits

Author SHA1 Message Date
Adhemerval Zanella
f338c7c5f5 math: Use log10p1f from CORE-MATH
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows slight better performance to the generic log10p1f.

The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).

Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (M1,
gcc 13.2.1), and powerpc (POWER10, gcc 13.2.1):

Latency                      master        patched   improvement
x86_64                      68.5251        32.2627        52.92%
x86_64v2                    68.8912        32.7887        52.41%
x86_64v3                    59.3427        27.0521        54.41%
i686                        162.026        103.383        36.19%
aarch64                     26.8513        14.5695        45.74%
power10                     12.7426         8.4929        33.35%
powerpc                     16.6768        9.29135        44.29%

reciprocal-throughput        master        patched   improvement
x86_64                      26.0969        12.4023        52.48%
x86_64v2                    25.0045        11.0748        55.71%
x86_64v3                    20.5610        10.2995        49.91%
i686                        89.8842        78.5211        12.64%
aarch64                     17.1200         9.4832        44.61%
power10                      6.7814         6.4258         5.24%
powerpc                      15.769         7.6825        51.28%

Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
2024-11-01 11:27:40 -03:00
Adhemerval Zanella
8ae9e51376 math: Use log1pf from CORE-MATH
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows slight better performance to the generic log1pf.

The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).

Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (M1,
gcc 13.2.1), and powerpc (POWER10, gcc 13.2.1):

Latency                      master        patched   improvement
x86_64                      71.8142        38.9668        45.74%
x86_64v2                    71.9094        39.1321        45.58%
x86_64v3                    60.1000        32.4016        46.09%
i686                        147.105        104.258        29.13%
aarch64                     26.4439        14.0050        47.04%
power10                     19.4874         9.4146        51.69%
powerpc                     17.6145        8.00736        54.54%

reciprocal-throughput        master        patched   improvement
x86_64                      19.7604        12.7254        35.60%
x86_64v2                    19.0039        11.9455        37.14%
x86_64v3                    16.8559        11.9317        29.21%
i686                        82.3426        73.9718        10.17%
aarch64                     14.4665         7.9614        44.97%
power10                     11.9974         8.4117        29.89%
powerpc                     7.15222         6.0914        14.83%

Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
2024-11-01 11:27:39 -03:00
Adhemerval Zanella
c369580814 math: Use log2p1f from CORE-MATH
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance compared to the generic log2p1f.

The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).

Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):

Latency                      master        patched   improvement
x86_64                      70.1462        47.0090        32.98%
x86_64v2                    70.2513        47.6160        32.22%
x86_64v3                    60.4840        39.9443        33.96%
i686                        164.068        122.909        25.09%
aarch64                     25.9169        16.9207        34.71%
power10                     18.1261        9.8592         45.61%
powerpc                     17.2683        9.38665        45.64%

reciprocal-throughput        master        patched   improvement
x86_64                      26.2240        16.4082        37.43%
x86_64v2                    25.0911        15.7480        37.24%
x86_64v3                    20.9371        11.7264        43.99%
i686                        90.4209        95.3073        -5.40%
aarch64                     16.8537        8.9561         46.86%
power10                     12.9401        6.5555         49.34%
powerpc                     9.01763        7.54745        16.30%

The performance decrease for i686 is mostly due the use of x87 fpu,
when building with '-msse2 -mfpmath=sse:

                             master        patched   improvement
latency                     164.068        102.982        37.23%
reciprocal-throughput       89.1968        82.5117         7.49%

Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
2024-11-01 11:27:39 -03:00
Adhemerval Zanella
bbd578b38d math: Use expm1f from CORE-MATH
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance compared to the generic expm1f.

The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).

Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):

Latency                      master        patched   improvement
x86_64                      96.7402        36.4026        62.37%
x86_64v2                    97.5391        33.4625        65.69%
x86_64v3                    82.1778        30.8668        62.44%
i686                         120.58        94.8302        21.35%
aarch64                     32.3558        12.8881        60.17%
power10                     23.5087        9.8574         58.07%
powerpc                     23.4776        9.06325        61.40%

reciprocal-throughput        master        patched   improvement
x86_64                      27.8224        15.9255        42.76%
x86_64v2                    27.8364        9.6438         65.36%
x86_64v3                    20.3227        9.6146         52.69%
i686                        63.5629        59.4718         6.44%
aarch64                     17.4838        7.1082         59.34%
power10                     12.4644        8.7829         29.54%
powerpc                     14.2152        5.94765        58.16%

Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
2024-11-01 11:27:35 -03:00
Adhemerval Zanella
5c22fd25c1 math: Use exp2m1f from CORE-MATH
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance compared to the generic exp2m1f.

The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).  The
only change is to handle FLT_MAX_EXP for FE_DOWNWARD or FE_TOWARDZERO.

The benchmark inputs are based on exp2f ones.

Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):

Latency                      master        patched   improvement
x86_64                      40.6042        48.7104       -19.96%
x86_64v2                    40.7506        35.9032        11.90%
x86_64v3                    35.2301        31.7956        9.75%
i686                        102.094        94.6657        7.28%
aarch64                     18.2704        15.1387        17.14%
power10                     11.9444         8.2402        31.01%

reciprocal-throughput        master        patched   improvement
x86_64                      20.8683        16.1428        22.64%
x86_64v2                    19.5076        10.4474        46.44%
x86_64v3                    19.2106        10.4014        45.86%
i686                        56.4054        59.3004        -5.13%
aarch64                     12.0781         7.3953        38.77%
power10                      6.5306         5.9388         9.06%

The generic implementation calls __ieee754_exp2f and x86_64 provides
an optimized ifunc version (built with -mfma -mavx2, not correctly
rounded).  This explains the performance difference for x86_64.

Same for i686, where the ABI provides an optimized __ieee754_exp2f
version built with '-msse2 -mfpmath=sse'.  When built wth same
flags, the new algorithm shows a better performance:

                            master        patched    improvement
latency                    102.094        91.2823         10.59%
reciprocal-throughput      56.4054        52.7984          6.39%

Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
2024-11-01 11:27:35 -03:00
Adhemerval Zanella
5fa89852fa math: Use exp10m1f from CORE-MATH
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance compared to the generic exp10m1f.

The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).  I mostly
fixed some small issues in corner cases (sNaN handling, -INFINITY,
a specific overflow check).

Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):

Latency                      master        patched   improvement
x86_64                      45.4690        49.5845        -9.05%
x86_64v2                    46.1604        36.2665        21.43%
x86_64v3                    37.8442        31.0359        17.99%
i686                        121.367        93.0079        23.37%
aarch64                     21.1126        15.0165        28.87%
power10                     12.7426        8.4929         33.35%

reciprocal-throughput        master        patched   improvement
x86_64                      19.6005        17.4005        11.22%
x86_64v2                    19.6008        11.1977        42.87%
x86_64v3                    17.5427        10.2898        41.34%
i686                        59.4215        60.9675        -2.60%
aarch64                     13.9814        7.9173         43.37%
power10                      6.7814        6.4258          5.24%

The generic implementation calls __ieee754_exp10f which has an
optimized version, although it is not correctly rounded, which is
the main culprit of the the latency difference for x86_64 and
throughp for i686.

Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
2024-11-01 11:27:26 -03:00
Paul Zimmermann
392b3f0971 replace tgammaf by the CORE-MATH implementation
The CORE-MATH implementation is correctly rounded (for any rounding mode).
This can be checked by exhaustive tests in a few minutes since there are
less than 2^32 values to check against for example GNU MPFR.
This patch also adds some bench values for tgammaf.

Tested on x86_64 and x86 (cfarm26).

With the initial GNU libc code it gave on an Intel(R) Core(TM) i7-8700:

      "tgammaf": {
       "": {
        "duration": 3.50188e+09,
        "iterations": 2e+07,
        "max": 602.891,
        "min": 65.1415,
        "mean": 175.094
       }
      }

With the new code:

      "tgammaf": {
       "": {
        "duration": 3.30825e+09,
        "iterations": 5e+07,
        "max": 211.592,
        "min": 32.0325,
        "mean": 66.1649
       }
      }

With the initial GNU libc code it gave on cfarm26 (i686):

  "tgammaf": {
   "": {
    "duration": 3.70505e+09,
    "iterations": 6e+06,
    "max": 2420.23,
    "min": 243.154,
    "mean": 617.509
   }
  }

With the new code:

  "tgammaf": {
   "": {
    "duration": 3.24497e+09,
    "iterations": 1.8e+07,
    "max": 1238.15,
    "min": 101.155,
    "mean": 180.276
   }
  }

Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>

Changes in v2:
    - include <math.h> (fix the linknamespace failures)
    - restored original benchtests/strcoll-inputs/filelist#en_US.UTF-8 file
    - restored original wrapper code (math/w_tgammaf_compat.c),
      except for the dealing with the sign
    - removed the tgammaf/float entries in all libm-test-ulps files
    - address other comments from Joseph Myers
      (https://sourceware.org/pipermail/libc-alpha/2024-July/158736.html)

Changes in v3:
    - pass NULL argument for signgam from w_tgammaf_compat.c
    - use of math_narrow_eval
    - added more comments

Changes in v4:
    - initialize local_signgam to 0 in math/w_tgamma_template.c
    - replace sysdeps/ieee754/dbl-64/gamma_productf.c by dummy file

Changes in v5:
    - do not mention local_signgam any more in math/w_tgammaf_compat.c
    - initialize local_signgam to 1 instead of 0 in w_tgamma_template.c
      and added comment

Changes in v6:
    - pass NULL as 2nd argument of __ieee754_gammaf_r in
      w_tgammaf_compat.c, and check for NULL in e_gammaf_r.c

Changes in v7:
    - added Signed-off-by line for Alexei Sibidanov (author of the code)

Changes in v8:
    - added Signed-off-by line for Paul Zimmermann (submitted of the patch)

Changes in v9:
    - address comments from review by Adhemerval Zanella
Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2024-10-11 11:12:32 +02:00
Florian Weimer
a8c433856f i386: Update ulps
As seen on an AMD Ryzen 9 7950X CPU when building with GCC 14
with SSE2 math.
2024-09-05 22:25:55 +02:00
Adhemerval Zanella
f8aafb5a16 i386: Regenerate ULPs
From new tests added by 0797283910.
2024-08-07 11:02:03 -03:00
Adhemerval Zanella
65e267dcdd i386: Regenerate ULPs
From new tests added by 4dc22baa84.
2024-07-25 10:49:06 -03:00
Florian Weimer
b375e597da i386: Update ulps
This is from a -march=i686 -mtune=generic build with
--disable-multi-arch, running on a Cascade Lake CPU.
2024-06-20 19:00:48 +02:00
Florian Weimer
3cb77b7d1e i386: Update ulps
Based on a -march=x86-64-v4 -mfpmath=sse build, with and without
--disable-multi-arch, running on a Zen 4 CPU.  Also used different
-march=x8i6-64-v… settings.
2024-06-20 12:15:09 +02:00
Joseph Myers
bb014f50c4 Implement C23 logp1
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the logp1 functions (aliases for log1p functions - the
name is intended to be more consistent with the new log2p1 and
log10p1, where clearly it would have been very confusing to name those
functions log21p and log101p).  As aliases rather than new functions,
the content of this patch is somewhat different from those actually
adding new functions.

Tests are shared with log1p, so this patch *does* mechanically update
all affected libm-test-ulps files to expect the same errors for both
functions.

The vector versions of log1p on aarch64 and x86_64 are *not* updated
to have logp1 aliases (and thus there are no corresponding header,
tests, abilist or ulps changes for vector functions either).  It would
be reasonable for such vector aliases and corresponding changes to
other files to be made separately.  For now, the log1p tests instead
avoid testing logp1 in the vector case (a Makefile change is needed to
avoid problems with grep, used in generating the .c files for vector
function tests, matching more than one ALL_RM_TEST line in a file
testing multiple functions with the same inputs, when it assumes that
the .inc file only has a single such line).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17 13:47:09 +00:00
Florian Weimer
3a3a449742 i386: ulp update for SSE2 --disable-multi-arch configurations 2024-04-25 12:56:48 +02:00
Carlos O'Donell
e465d97653 i386: Regenerate ulps
These failures were caught while building glibc master for Fedora
Rawhide which is built with '-mtune=generic -msse2 -mfpmath=sse'
using gcc 11.3 (gcc-11.3.1-2.fc35) on a Cascadelake Intel Xeon
processor.
2022-04-26 10:52:41 -04:00
Arjun Shankar
e785361ce3 i386: Regenerate ulps
These failures were caught while building glibc master for Fedora Rawhide
which is built with `-mtune=generic -msse2 -mfpmath=sse'.
2021-07-25 22:29:27 +02:00
Adhemerval Zanella
30c2a0e41b i386: Update ulps
Required after 43576de04a "Improve the accuracy of tgamma
(BZ #26983)"
2021-04-13 16:33:27 -03:00
Adhemerval Zanella
1d64e962ab i386: Update ulps
Required after 9acda61d94 "Fix the inaccuracy of j0f/j1f/y0f/y1f
[BZ #14469, #14470, #14471, #14472]".
2021-04-05 10:02:15 -03:00
Florian Weimer
f01a61e138 i386: Regenerate ulps 2021-03-02 15:41:29 +01:00
Siddhesh Poyarekar
d46c51e9f9 i686: Regenerate ULPs 2021-02-03 23:16:39 +05:30
Florian Weimer
bca0283815 i386: Regenerate ulps
For new inputs added in commit cad5ad81d2.
2020-12-21 18:19:03 +01:00
Patsy Griffin
86a912c863 Update i686 ulps.
Without this ULP patch these 3 tests fail on i686:
FAIL: math/test-float128-j0
FAIL: math/test-float64x-j0
FAIL: math/test-ldouble-j0

CPU info:
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           85
Model name:                      Intel Xeon Processor (Cascadelake)
2020-09-02 10:00:29 -04:00
Patsy Franklin
b21c2c24ed Update i686 libm-test-ulps
Without my ULP patch these 18 tests fail on i686:
 https://koji.fedoraproject.org/koji/taskinfo?taskID=46467301

+ cat /proc/cpuinfo
processor	: 0
vendor_id	: GenuineIntel
cpu family	: 6
model		: 85
model name	: Intel Xeon Processor (Cascadelake)

FAIL: math/test-double-j0
FAIL: math/test-double-y0
FAIL: math/test-float-erfc
FAIL: math/test-float-j0
FAIL: math/test-float-j1
FAIL: math/test-float-lgamma
FAIL: math/test-float-tgamma
FAIL: math/test-float-y0
FAIL: math/test-float32-erfc
FAIL: math/test-float32-j0
FAIL: math/test-float32-j1
FAIL: math/test-float32-lgamma
FAIL: math/test-float32-tgamma
FAIL: math/test-float32-y0
FAIL: math/test-float32x-j0
FAIL: math/test-float32x-y0
FAIL: math/test-float64-j0
FAIL: math/test-float64-y0

With my ULP patch applied these tests now pass:
 https://koji.fedoraproject.org/koji/taskinfo?taskID=46436310
2020-07-09 23:43:25 -04:00
Samuel Thibault
415d0b0b3f Update i386 libm-test-ulps 2020-05-26 13:21:57 +02:00
Adhemerval Zanella
1c15464ca0 math: Remove inline math tests
With mathinline removal there is no need to keep building and testing
inline math tests.

The gen-libm-tests.py support to generate ULP_I_* is removed and all
libm-test-ulps files are updated to longer have the
i{float,double,ldouble} entries.  The support for no-test-inline is
also removed from both gen-auto-libm-tests and the
auto-libm-test-out-* were regenerated.

Checked on x86_64-linux-gnu and i686-linux-gnu.
2020-03-19 11:45:44 -03:00
Andreas Schwab
b72971845a Update i386 libm-test-ulps 2019-08-20 17:06:02 +02:00
Andreas Schwab
56e098118a Update i386 libm-test-ulps 2019-08-15 12:25:51 +02:00
Florian Weimer
e02c026f38 math: Update i686 ulps (--disable-multi-arch configuration)
The results are from configuring with --disable-multi-arch,  building
with “-march=x86-64 -mtune=generic -mfpmath=sse” and running the
testsuite on a Haswell-era CPU.
2018-06-01 22:37:55 +02:00
Joseph Myers
34ba96b89c Update i386 libm-test-ulps.
I found the i386 libm-test-ulps files needed updating (probably the
sqrt changes perturbed exactly when excess precision was used by the
compiler).

	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
2018-03-16 17:43:38 +00:00
Samuel Thibault
107a35a575 i386: Regenerate libm-test-ulps for for gcc 7 on i686
* sysdeps/i386/fpu/libm-test-ulps: Regenerated for GCC 7 with
	"-O2 -march=i686".
2018-01-06 22:11:40 +01:00
Joseph Myers
1f9055ce04 Add _Float32 function aliases.
This patch concludes filling out TS 18661-3 support for different
types by adding *f32 function aliases of float functions to support
_Float32.  As with _Float64 and _Float32x, this is supported for all
glibc configurations.  As with the previous such patches there are
some x86 ulps updates because of inline functions present for float
but not for _Float32.  The patch also has the usual
bits/floatn-common.h update, symbol versions, ABI baselines updates,
test enablement and documentation.

Tested for x86_64 and x86, and with build-many-glibcs.py, with both
GCC 6 and GCC 7.

	* bits/floatn-common.h (__HAVE_FLOAT32): Define to 1.
	* manual/math.texi (Mathematics): Document support for _Float32.
	* math/Makefile (test-types): Add float32.
	* math/Versions (GLIBC_2.27): Add _Float32 functions.
	* stdlib/Versions (GLIBC_2.27): Likewise.
	* wcsmbs/Versions (GLIBC_2.27): Likewise.
	* sysdeps/unix/sysv/linux/aarch64/libc.abilist: Update.
	* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/arm/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/hppa/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/i386/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/ia64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/microblaze/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/nios2/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
	Likewise.

	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sh/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilepro/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
2017-12-07 00:48:31 +00:00
Joseph Myers
0d93b7fd7c Add _Float64, _Float32x function aliases.
This patch continues filling out TS 18661-3 support by adding *f64 and
*f32x function aliases, supporting _Float64 and _Float32x, as aliases
for double functions.  These types are supported for all glibc
configurations.  The API corresponds exactly to that for _Float128 and
_Float64x.  _Float32 aliases to float functions remain to be added in
subsequent patches to complete this process (then there are a few
miscellaneous functions in TS 18661-3 to implement that aren't simply
versions of existing functions for new types).

The patch enables the feature in bits/floatn-common.h, adds symbol
versions and documentation with updates to ABI baselines, and arranges
for the libm functions for the new types to be tested.  As with the
_Float64x changes there are some x86 ulps updates because of header
inlines not used for the new types (and one other change to the
non-multiarch libm-test-ulps, which I suppose comes from using a
different compiler version / configuration from when it was last
regenerated).

Tested for x86_64 and x86, and with build-many-glibcs.py, with both
GCC 6 and GCC 7.

	* bits/floatn-common.h (__HAVE_FLOAT64): Define to 1.
	(__HAVE_FLOAT32X): Likewise.
	* manual/math.texi (Mathematics): Document support for _Float64
	and _Float32x.
	* math/Makefile (test-types): Add float64 and float32x.
	* math/Versions (GLIBC_2.27): Add _Float64 and _Float32x
	functions.
	* stdlib/Versions (GLIBC_2.27): Likewise.
	* wcsmbs/Versions (GLIBC_2.27): Likewise.
	* sysdeps/unix/sysv/linux/aarch64/libc.abilist: Update.
	* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/arm/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/hppa/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/i386/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/ia64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/microblaze/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/nios2/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sh/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libc.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilepro/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
2017-12-06 00:58:03 +00:00
Joseph Myers
a23aa5b727 Add _Float64x function aliases.
This patch continues filling out TS 18661-3 support by adding *f64x
function aliases on platforms with _Float64x support.  (It so happens
the set of such platforms is exactly the same as the set of platforms
with _Float128 support, although on x86_64, x86 and ia32 the _Float64x
format is Intel extended rather than binary128.)  The API provided
corresponds exactly to that provided for _Float128, mostly coming from
TS 18661-3.  As these functions always alias those for another type
(long double, _Float128 or both), __* function names are not provided,
as in other cases of alias types.

Given the preparation done in previous patches, this one just enables
the feature via Makeconfig and bits/floatn.h, adds symbol versions,
and updates documentation and ABI baselines.  The symbol versions are
present unconditionally as GLIBC_2.27 in the relevant Versions files,
as it's OK for those to specify versions for functions that may not be
present in some configurations; no additional complexity is needed
unless in future some configuration gains support for this type that
didn't have such support in 2.27.  The Makeconfig additions for ia64
and x86 aren't strictly needed, as those configurations also get
float64x-alias-fcts definitions from
sysdeps/ieee754/float128/Makeconfig, but still seem appropriate given
that _Float64x is not _Float128 for those configurations.

A libm-test-ulps update for x86 is included.  This is because
bits/mathinline.h does not have _Float64x support added and for two
functions the use of out-of-line functions results in increased ulps
(ifloat64x shares ulps with ildouble / ifloat128 as appropriate).
Given that we'd like generally to eliminate bits/mathinline.h
optimizations, preferring to have such optimizations in GCC instead,
it seems reasonable not to add such support there for new types.  GCC
support for _FloatN / _FloatNx built-in functions is limited, but has
been improved in GCC 8, and at some point I hope the full set of libm
built-in functions in GCC, and other optimizations with
per-floating-type aspects, will be enabled for all _FloatN / _FloatNx
types.

Tested for x86_64 and x86, and with build-many-glibcs.py, with both
GCC 6 and GCC 7.

	* sysdeps/ia64/Makeconfig (float64x-alias-fcts): New variable.
	* sysdeps/ieee754/float128/Makeconfig (float64x-alias-fcts):
	Likewise.
	* sysdeps/ieee754/ldbl-128/Makeconfig (float64x-alias-fcts):
	Likewise.
	* sysdeps/x86/Makeconfig: New file.
	* bits/floatn-common.h (__HAVE_FLOAT64X): Remove macro.
	(__HAVE_FLOAT64X_LONG_DOUBLE): Likewise.
	* bits/floatn.h (__HAVE_FLOAT64X): New macro.
	(__HAVE_FLOAT64X_LONG_DOUBLE): Likewise.
	* sysdeps/ia64/bits/floatn.h (__HAVE_FLOAT64X): Likewise.
	(__HAVE_FLOAT64X_LONG_DOUBLE): Likewise.
	* sysdeps/ieee754/ldbl-128/bits/floatn.h (__HAVE_FLOAT64X):
	Likewise.
	(__HAVE_FLOAT64X_LONG_DOUBLE): Likewise.
	* sysdeps/mips/ieee754/bits/floatn.h (__HAVE_FLOAT64X): Likewise.
	(__HAVE_FLOAT64X_LONG_DOUBLE): Likewise.
	* sysdeps/powerpc/bits/floatn.h (__HAVE_FLOAT64X): Likewise.
	(__HAVE_FLOAT64X_LONG_DOUBLE): Likewise.
	* sysdeps/x86/bits/floatn.h (__HAVE_FLOAT64X): Likewise.
	(__HAVE_FLOAT64X_LONG_DOUBLE): Likewise.
	* manual/math.texi (Mathematics): Document support for _Float64x.
	* math/Versions (GLIBC_2.27): Add _Float64x functions.
	* stdlib/Versions (GLIBC_2.27): Likewise.
	* wcsmbs/Versions (GLIBC_2.27): Likewise.
	* sysdeps/unix/sysv/linux/aarch64/libc.abilist: Update.
	* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/i386/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/ia64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
2017-11-27 14:16:47 +00:00
H.J. Lu
63d3b468c1 i386: Regenerate libm-test-ulps for for gcc 7
Regenerate libm-test-ulps for gcc 7 with "-m32 -O2 -march=i586".

	* sysdeps/i386/fpu/libm-test-ulps: Regenerated for GCC 7 with
	"-O2 -march=i586".
2017-10-27 14:09:14 -07:00
H.J. Lu
5313581cb5 i386: Replace assembly versions of e_powf with generic e_powf.c
This patch replaces i386 assembly versions of e_powf with generic
e_powf.c.  For workload-spec2017.wrf, on Nehalem, it improves
performance by:

                           Before            After     Improvement
reciprocal-throughput      230.855          78.3358       194%
latency                    231.685          94.1259       146%

On Skylake, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      239.858          47.4713       405%
latency                    247.57           93.8798       163%

On IvyBridge with --disable-multi-arch, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      269.078          63.3758       324%
latency                    271.473          102.091       165%

	* sysdeps/i386/fpu/e_powf.S: Removed.
	* sysdeps/i386/fpu/e_powf_log2_data.c: Likewise.
	* sysdeps/i386/fpu/w_powf.c: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Updated for generic e_powf.c.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/Makefile (libm-sysdep_routines):
	Add e_powf-sse2.
	(CFLAGS-e_powf-sse2.c): New.
	* sysdeps/i386/i686/fpu/multiarch/e_powf-sse2.c: New file.
	* sysdeps/i386/i686/fpu/multiarch/e_powf.c: Likewise.
2017-10-22 08:12:41 -07:00
H.J. Lu
6089a3ee24 i386: Replace assembly versions of e_log2f with generic e_log2f.c
This patch replaces i386 assembly versions of e_log2f with generic
e_log2f.c.  For workload-spec2017.wrf, on Nehalem, it improves
performance by:

                           Before            After     Improvement
reciprocal-throughput      92.3845          30.8752       199%
latency                    112.855          54.8645       105%

On Skylake, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      98.7488          22.7507       334%
latency                    118.01           51.6083       128%

On IvyBridge with --disable-multi-arch, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      106.635          28.8596       269%
latency                    129.888          56.9187       128%

	* sysdeps/i386/fpu/e_log2f.S: Removed.
	* sysdeps/i386/fpu/e_log2f_data.c: Likewise.
	* sysdeps/i386/fpu/w_log2f.c: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Updated for generic e_log2f.c.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/Makefile (libm-sysdep_routines):
	Add e_log2f-sse2.
	(CFLAGS-e_log2f-sse2.c): New.
	* sysdeps/i386/i686/fpu/multiarch/e_log2f-sse2.c: New file.
	* sysdeps/i386/i686/fpu/multiarch/e_log2f.c: Likewise.
2017-10-22 08:10:18 -07:00
H.J. Lu
fe596486d6 i386: Replace assembly versions of e_logf with generic e_logf.c
This patch replaces i386 assembly versions of e_logf with generic
e_logf.c.  For workload-spec2017.wrf, on Nehalem, it improves
performance by:

                           Before            After     Improvement
reciprocal-throughput      73.3865          40.0454       83%
latency                    90.0985          54.4479       65%

On Skylake, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      75.1384          22.1452       239%
latency                    91.9441          50.7925       81%

On IvyBridge with --disable-multi-arch, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      84.5575          28.7879       193%
latency                    103.971          57.5231       80%

	* sysdeps/i386/fpu/e_logf.S: Removed.
	* sysdeps/i386/fpu/e_logf_data.c: Likewise.
	* sysdeps/i386/fpu/w_logf.c: Likewise.
	* sysdeps/i386/i686/fpu/e_logf.S: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Updated for generic e_logf.c.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/Makefile (libm-sysdep_routines):
	Add e_logf-sse2.
	(CFLAGS-e_logf-sse2.c): New.
	* sysdeps/i386/i686/fpu/multiarch/e_logf-sse2.c: New file.
	* sysdeps/i386/i686/fpu/multiarch/e_logf.c: Likewise.
2017-10-22 08:02:58 -07:00
H.J. Lu
7eda65f69e i386: Replace assembly versions of e_exp2f with generic e_exp2f.c
This patch replaces i386 assembly versions of e_exp2f with generic
e_exp2f.c.  For workload-spec2017.wrf, on Nehalem, it improves
performance by:

                           Before            After     Improvement
reciprocal-throughput      112.996          40.0454       182%
latency                    126.581          54.4479       132%

On Skylake, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      113.14           39.447        186%
latency                    136.068          55.684        144%

On IvyBridge with --disable-multi-arch, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      132.521          40.3759       228%
latency                    145.791          58.4587       149%

	* sysdeps/i386/fpu/e_exp2f.S: Removed.
	* sysdeps/i386/fpu/w_exp2f.c: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Updated for generic e_exp2f.c.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/Makefile (libm-sysdep_routines):
	Add e_exp2f-sse2.
	(CFLAGS-e_exp2f-sse2.c): New.
	* sysdeps/i386/i686/fpu/multiarch/e_exp2f-sse2.c: New file.
	* sysdeps/i386/i686/fpu/multiarch/e_exp2f.c: Likewise.
2017-10-22 08:00:18 -07:00
H.J. Lu
b2f6137ea5 i386: Replace assembly versions of e_expf with generic e_expf.c
This patch replaces i386 assembly versions of e_expf with generic
e_expf.c.  For workload-spec2017.wrf, on Nehalem, it improves
performance by:

                           Before            After     Improvement
reciprocal-throughput      55.5724          40.2664       38%
latency                    80.0687          60.8517       31%

On Skylake, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      62.4056          39.4188       58%
latency                    85.5496          59.6377       43%

On IvyBridge with --disable-multi-arch, it improves performance by:

                           Before            After     Improvement
reciprocal-throughput      133.707          40.3778       231%
latency                    149.191          63.2515       135%

	* sysdeps/i386/fpu/e_exp2f_data.c: Removed.
	* sysdeps/i386/fpu/e_expf.S: Likewise.
	* sysdeps/i386/fpu/math_errf.c: Likewise.
	* sysdeps/i386/fpu/w_expf.c: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/e_expf-ia32.S: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/e_expf-sse2.S: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/w_expf.c: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Updated for generic e_expf.c.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/Makefile (libm-sysdep_routines):
	Remove e_expf-ia32.
	(CFLAGS-e_expf-sse2.c): New.
	* sysdeps/i386/i686/fpu/multiarch/e_expf-sse2.c: New file.
	* sysdeps/i386/i686/fpu/multiarch/e_expf.c: Rewritten.
2017-10-22 07:54:50 -07:00
H.J. Lu
95ccb619f5 i386: Regenerate libm-test-ulps
Regenerate libm-test-ulps for --disable-multi-arch.

	* sysdeps/i386/fpu/libm-test-ulps: Regenerated.
2017-10-19 11:51:57 -07:00
Joseph Myers
5a80d39d0d Obsolete pow10 functions.
This patch obsoletes the pow10, pow10f and pow10l functions (makes
them into compat symbols, not available for new ports or static
linking).  The exp10 names for these functions are standardized (in TS
18661-4) and were added in the same glibc version (2.1) as pow10 so
source code can change to use them without any loss of portability.
Since pow10 is deliberately not provided for _Float128, only exp10,
this slightly simplifies moving to the new wrapper templates in the
!LIBM_SVID_COMPAT case, by avoiding needing to arrange for pow10,
pow10f and pow10l to be defined by those templates.

Tested for x86_64, and with build-many-glibcs.py.

	* manual/math.texi (pow10): Do not document.
	(pow10f): Likewise.
	(pow10l): Likewise.
	* math/bits/mathcalls.h [__USE_GNU] (pow10): Do not declare.
	* math/bits/math-finite.h [__USE_GNU] (pow10): Likewise.
	* math/libm-test-exp10.inc (pow10_test): Remove.
	(do_test): Do not call pow10.
	* math/w_exp10_compat.c (pow10): Make into compat symbol.
	[NO_LONG_DOUBLE] (pow10l): Likewise.
	* math/w_exp10f_compat.c (pow10f): Likewise.
	* math/w_exp10l_compat.c (pow10l): Likewise.
	* sysdeps/ia64/fpu/e_exp10.S: Include <shlib-compat.h>.
	(pow10): Make into compat symbol.
	* sysdeps/ia64/fpu/e_exp10f.S: Include <shlib-compat.h>.
	(pow10f): Make into compat symbol.
	* sysdeps/ia64/fpu/e_exp10l.S: Include <shlib-compat.h>.
	(pow10l): Make into compat symbol.
	* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Remove
	pow10.
	(CFLAGS-nldbl-pow10.c): Remove variable..
	* sysdeps/ieee754/ldbl-opt/nldbl-pow10.c: Remove file.
	* sysdeps/ieee754/ldbl-opt/w_exp10_compat.c (pow10l): Condition on
	[SHLIB_COMPAT (libm, GLIBC_2_1, GLIBC_2_27)].
	* sysdeps/ieee754/ldbl-opt/w_exp10l_compat.c (compat_symbol):
	Undefine and redefine.
	(pow10l): Make into compat symbol.
	* sysdeps/aarch64/libm-test-ulps: Remove pow10 ulps.
	* sysdeps/alpha/fpu/libm-test-ulps: Likewise.
	* sysdeps/arm/libm-test-ulps: Likewise.
	* sysdeps/hppa/fpu/libm-test-ulps: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/microblaze/libm-test-ulps: Likewise.
	* sysdeps/mips/mips32/libm-test-ulps: Likewise.
	* sysdeps/mips/mips64/libm-test-ulps: Likewise.
	* sysdeps/nios2/libm-test-ulps: Likewise.
	* sysdeps/powerpc/fpu/libm-test-ulps: Likewise.
	* sysdeps/powerpc/nofpu/libm-test-ulps: Likewise.
	* sysdeps/s390/fpu/libm-test-ulps: Likewise.
	* sysdeps/sh/libm-test-ulps: Likewise.
	* sysdeps/sparc/fpu/libm-test-ulps: Likewise.
	* sysdeps/tile/libm-test-ulps: Likewise.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2017-09-01 21:13:18 +00:00
Joseph Myers
c86ed71d63 Add float128 support for x86_64, x86.
This patch enables float128 support for x86_64 and x86.  All GCC
versions that can build glibc provide the required support, but since
GCC 6 and before don't provide __builtin_nanq / __builtin_nansq, sNaN
tests and some tests of NaN payloads need to be disabled with such
compilers (this does not affect the generated glibc binaries at all,
just the tests).  bits/floatn.h declares float128 support to be
available for GCC versions that provide the required libgcc support
(4.3 for x86_64, 4.4 for i386 GNU/Linux, 4.5 for i386 GNU/Hurd);
compilation-only support was present some time before then, but not
really useful without the libgcc functions.

fenv_private.h needed updating to avoid trying to put _Float128 values
in registers.  I make no assertion of optimality of the
math_opt_barrier / math_force_eval definitions for this case; they are
simply intended to be sufficient to work correctly.

Tested for x86_64 and x86, with GCC 7 and GCC 6.  (Testing for x32 was
compilation tests only with build-many-glibcs.py to verify the ABI
baseline updates.  I have not done any testing for Hurd, although the
float128 support is enabled there as for GNU/Linux.)

	* sysdeps/i386/Implies: Add ieee754/float128.
	* sysdeps/x86_64/Implies: Likewise.
	* sysdeps/x86/bits/floatn.h: New file.
	* sysdeps/x86/float128-abi.h: Likewise.
	* manual/math.texi (Mathematics): Document support for _Float128
	on x86_64 and x86.
	* sysdeps/i386/fpu/fenv_private.h: Include <bits/floatn.h>.
	(math_opt_barrier): Do not put _Float128 values in floating-point
	registers.
	(math_force_eval): Likewise.
	[__x86_64__] (SET_RESTORE_ROUNDF128): New macro.
	* sysdeps/x86/fpu/Makefile [$(subdir) = math] (CPPFLAGS): Append
	to Makefile variable.
	* sysdeps/x86/fpu/e_sqrtf128.c: New file.
	* sysdeps/x86/fpu/sfp-machine.h: Likewise.  Based on libgcc.
	* sysdeps/x86/math-tests.h: New file.
	* math/libm-test-support.h (XFAIL_FLOAT128_PAYLOAD): New macro.
	* math/libm-test-getpayload.inc (getpayload_test_data): Use
	XFAIL_FLOAT128_PAYLOAD.
	* math/libm-test-setpayload.inc (setpayload_test_data): Likewise.
	* math/libm-test-totalorder.inc (totalorder_test_data): Likewise.
	* math/libm-test-totalordermag.inc (totalordermag_test_data):
	Likewise.
	* sysdeps/unix/sysv/linux/i386/libc.abilist: Update.
	* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Likewise.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2017-06-26 22:02:24 +00:00
Joseph Myers
06a5b8f799 Update x86 ulps for GCC 7.
Testing with GCC 7 for 32-bit x86 showed some ulps differences,
presumably from variation in when values with excess precision get
spilled to the stack and so lose that precision.  This patch updates
the libm-test-ulps files accordingly.

	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
2017-06-23 20:23:26 +00:00
Joseph Myers
2c51dfd05d Move tests of catan, catanh to auto-libm-test-*.
This patch moves tests of catan and catanh with finite inputs (other
than the divide-by-zero cases producing an exact infinity) to using
the auto-libm-test machinery.  Each of auto-libm-test-out-catan and
auto-libm-test-out-catanh takes about three seconds to generate on my
system (so in fact it wasn't necessary after all to defer the move to
auto-libm-test-* until the output files were split up by function).

Tested for x86_64 and x86 and ulps updated accordingly.

	* math/auto-libm-test-in: Add tests of catan and catanh.
	* math/auto-libm-test-out-catan: New generated file.
	* math/auto-libm-test-out-catanh: Likewise.
	* math/libm-test-catan.inc (catan_test_data): Use AUTO_TESTS_c_c.
	Move tests with finite inputs, except divide-by-zero cases, to
	auto-libm-test-in.
	* math/libm-test-catanh.inc (catanh_test_data): Likewise.
	* math/Makefile (libm-test-funcs-auto): Add catan and catanh.
	(libm-test-funcs-noauto): Remove catan and catanh.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2017-02-17 18:42:37 +00:00
Joseph Myers
fa2a3dd7a3 Move tests of casin, casinh to auto-libm-test-*.
This patch moves tests of casin and casinh with finite inputs to using
the auto-libm-test machinery.  Each of auto-libm-test-out-casin and
auto-libm-test-out-casinh takes about 38 minutes to generate on my
system because of MPC slowness on special cases that appear in the
tests (with MPC 1.0.3; I don't know to what extent current MPC master
might speed it up).

Tested for x86_64 and x86 and ulps updated accordingly.

	* math/auto-libm-test-in: Add tests of casin and casinh.
	* math/auto-libm-test-out-casin: New generated file.
	* math/auto-libm-test-out-casinh: Likewise.
	* math/libm-test-casin.inc (casin_test_data): Use AUTO_TESTS_c_c.
	Move tests with finite inputs to auto-libm-test-in.
	* math/libm-test-casinh.inc (casinh_test_data): Likewise.
	* math/Makefile (libm-test-funcs-auto): Add casin and casinh.
	(libm-test-funcs-noauto): Remove casin and casinh.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2017-02-17 18:14:02 +00:00
Joseph Myers
6b8303a383 Move tests of cacos, cacosh to auto-libm-test-*.
This patch moves tests of cacos and cacosh with finite inputs to using
the auto-libm-test machinery.  Each of auto-libm-test-out-cacos and
auto-libm-test-out-cacosh takes about 80 minutes to generate on my
system because of MPC slowness on special cases that appear in the
tests (with MPC 1.0.3; I don't know to what extent current MPC master
might speed it up).

Tested for x86_64 and x86 and ulps updated accordingly.

	* math/auto-libm-test-in: Add tests of cacos and cacosh.
	* math/auto-libm-test-out-cacos: New generated file.
	* math/auto-libm-test-out-cacosh: Likewise.
	* math/libm-test-cacos.inc (cacos_test_data): Use AUTO_TESTS_c_c.
	Move tests with finite inputs to auto-libm-test-in.
	* math/libm-test-cacosh.inc (cacosh_test_data): Likewise.
	* math/Makefile (libm-test-funcs-auto): Add cacos and cacosh.
	(libm-test-funcs-noauto): Remove cacos and cacosh.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2017-02-17 17:44:23 +00:00
Joseph Myers
785fcbaef3 Update i386 libm-test-ulps.
When testing changes to i386 libm functions (that are shadowed for
i686 builds by i686 versions) recently, I saw that the plain i386
libm-test-ulps (as opposed to the i686 multiarch version) needed
updating for tests that had been added since it was last updated.
This patch updates it accordingly.

	* sysdeps/i386/fpu/libm-test-ulps: Update.
2017-01-03 21:05:46 +00:00
Aurelien Jarno
5537f466d6 i386: move ULPs to i686/multiarch and regenerate new ones for i386
The i386 ULPs are actually the i686/multiarch ones. The i686/multiarch
float ULPs are more precise as the SSE2 version (when available) uses
double for the cosf and sinf functions.

On the other hand the higher precision of the x86 FPU improves the
precision for a few other math functions.

	* sysdeps/i386/fpu/libm-test-ulps: Move to ....
	* sysdeps/i386/i686/multiarch/fpu/libm-test-ulps: ...here.
	* sysdeps/i386/fpu/libm-test-ulps: Regenerate.
2015-12-20 16:36:45 +01:00
Joseph Myers
199a338654 Add more libm tests (scalb*, signbit, sin, sincos, sinh, sqrt, tan, tanh, tgamma, y0, y1, yn, significand).
This patch improves the libm test coverage for a few more functions.

Tested for x86_64 and x86.

	* math/auto-libm-test-in: Add more tests of sin, sincos, sinh,
	sqrt, tan, tanh, y0, y1 and yn.
	* math/auto-libm-test-out: Regenerated.
	* math/libm-test.inc (scalb_test_data): Add more tests.
	(scalbn_test_data): Likewise.
	(scalbln_test_data): Likewise.
	(signbit_test_data): Likewise.
	(sin_test_data): Likewise.
	(sincos_test_data): Likewise.
	(sinh_test_data): Likewise.
	(sqrt_test_data): Likewise.
	(tan_test_data): Likewise.
	(tanh_test_data): Likewise.
	(tgamma_test_data): Likewise.
	(y0_test_data): Likewise.
	(y1_test_data): Likewise.
	(yn_test_data): Likewise.
	(significand_test_data): Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
2015-11-04 00:45:23 +00:00
Joseph Myers
a5721ebc68 Fix clog, clog10 inaccuracy (bug 19016).
For arguments with X^2 + Y^2 close to 1, clog and clog10 avoid large
errors from log(hypot) by computing X^2 + Y^2 - 1 in a way that avoids
cancellation error and then using log1p.

However, the thresholds for using that approach still result in log
being used on argument as large as sqrt(13/16) > 0.9, leading to
significant errors, in some cases above the 9ulp maximum allowed in
glibc libm.  This patch arranges for the approach using log1p to be
used in any cases where |X|, |Y| < 1 and X^2 + Y^2 >= 0.5 (with the
existing allowance for cases where one of X and Y is very small),
adjusting the __x2y2m1 functions to work with the wider range of
inputs.  This way, log only gets used on arguments below sqrt(1/2) (or
substantially above 1), where the error involved is much less.

Tested for x86_64, x86, mips64 and powerpc.  For the ulps regeneration
I removed the existing clog and clog10 ulps before regenerating to
allow any reduced ulps to appear.  Tests added include those found by
random test generation to produce large ulps either before or after
the patch, and some found by trying inputs close to the (0.75, 0.5)
threshold where the potential errors from using log are largest.

	[BZ #19016]
	* sysdeps/generic/math_private.h (__x2y2m1f): Update comment to
	allow more cases with X^2 + Y^2 >= 0.5.
	* sysdeps/ieee754/dbl-64/x2y2m1.c (__x2y2m1): Likewise.  Add -1 as
	normal element in sum instead of special-casing based on values of
	arguments.
	* sysdeps/ieee754/dbl-64/x2y2m1f.c (__x2y2m1f): Update comment.
	* sysdeps/ieee754/ldbl-128/x2y2m1l.c (__x2y2m1l): Likewise.  Add
	-1 as normal element in sum instead of special-casing based on
	values of arguments.
	* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c (__x2y2m1l): Likewise.
	* sysdeps/ieee754/ldbl-96/x2y2m1.c [FLT_EVAL_METHOD != 0]
	(__x2y2m1): Update comment.
	* sysdeps/ieee754/ldbl-96/x2y2m1l.c (__x2y2m1l): Likewise.  Add -1
	as normal element in sum instead of special-casing based on values
	of arguments.
	* math/s_clog.c (__clog): Handle more cases using log1p without
	hypot.
	* math/s_clog10.c (__clog10): Likewise.
	* math/s_clog10f.c (__clog10f): Likewise.
	* math/s_clog10l.c (__clog10l): Likewise.
	* math/s_clogf.c (__clogf): Likewise.
	* math/s_clogl.c (__clogl): Likewise.
	* math/auto-libm-test-in: Add more tests of clog and clog10.
	* math/auto-libm-test-out: Regenerated.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2015-09-28 22:11:22 +00:00