8b8c768e3c ("Force use of -ffreestanding when checking for gnumach
headers") was passing -ffreestanding to CFLAGS only, but headers checks are
performed with the preprocessor, so we rather need to pass it to CPPFLAGS.
Without this ./configure assumes that we are in a fully hosted
environment, which might not be the case. After this patch, we can rely on
the freestanding header files provided by GCC such as stdint.h.
Message-Id: <Y5+0V9osFc/zXMq0@mars>
Previously, getrandom would, each time it's called, traverse the file
system to find /dev/urandom, fetch some random data from it, then throw
away that port. This is quite slow, while calls to getrandom are
genrally expected to be fast.
Additionally, this means that getrandom can not work when /dev/urandom
is unavailable, such as inside a chroot that lacks one. User programs
expect calls to getrandom to work inside a chroot if they first call
getrandom outside of the chroot.
In particular, this is known to break the OpenSSH server, and in that
case the issue is exacerbated by the API of arc4random, which prevents
it from properly reporting errors, forcing glibc to abort on failure.
This causes sshd to just die once it tries to generate a random number.
Caching the random server port, in a manner similar to how socket
server ports are cached, both improves the performance and works around
the chroot issue.
Tested on i686-gnu with the following program:
pthread_barrier_t barrier;
void *worker(void*) {
pthread_barrier_wait(&barrier);
uint32_t sum = 0;
for (int i = 0; i < 10000; i++) {
sum += arc4random();
}
return (void *)(uintptr_t) sum;
}
int main() {
pthread_t threads[THREAD_COUNT];
pthread_barrier_init(&barrier, NULL, THREAD_COUNT);
for (int i = 0; i < THREAD_COUNT; i++) {
pthread_create(&threads[i], NULL, worker, NULL);
}
for (int i = 0; i < THREAD_COUNT; i++) {
void *retval;
pthread_join(threads[i], &retval);
printf("Thread %i: %lu\n", i, (unsigned long)(uintptr_t) retval);
}
In my totally unscientific benchmark, with this patch, this completes
in about 7 seconds, whereas previously it took about 50 seconds. This
program was also used to test that getrandom () doesn't explode if the
random server dies, but instead reopens the /dev/urandom anew. I have
also verified that with this patch, OpenSSH can once again accept
connections properly.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20221202135558.23781-1-bugaevc@gmail.com>
This makes it more likely that the compiler can compute the strlen
argument in _startup_fatal at compile time, which is required to
avoid a dependency on strlen this early during process startup.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
The old exception handling implementation used function interposition
to replace the dynamic loader implementation (no TLS support) with the
libc implementation (TLS support). This results in problems if the
link order between the dynamic loader and libc is reversed (bug 25486).
The new implementation moves the entire implementation of the
exception handling functions back into the dynamic loader, using
THREAD_GETMEM and THREAD_SETMEM for thread-local data support.
These depends on Hurd support for these macros, added in commit
b65a82e4e7 ("hurd: Add THREAD_GET/SETMEM/_NC").
One small obstacle is that the exception handling facilities are used
before the TCB has been set up, so a check is needed if the TCB is
available. If not, a regular global variable is used to store the
exception handling information.
Also rename dl-error.c to dl-catch.c, to avoid confusion with the
dlerror function.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
In the future, this will result in a compilation failure if the
macros are unexpectedly undefined (due to header inclusion ordering
or header inclusion missing altogether).
Assembler sources are more difficult to convert. In many cases,
they are hand-optimized for the mangling and no-mangling variants,
which is why they are not converted.
sysdeps/s390/s390-32/__longjmp.c and sysdeps/s390/s390-64/__longjmp.c
are special: These are C sources, but most of the implementation is
in assembler, so the PTR_DEMANGLE macro has to be undefined in some
cases, to match the assembler style.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This allows us to define a generic no-op version of PTR_MANGLE and
PTR_DEMANGLE. In the future, we can use PTR_MANGLE and PTR_DEMANGLE
unconditionally in C sources, avoiding an unintended loss of hardening
due to missing include files or unlucky header inclusion ordering.
In i386 and x86_64, we can avoid a <tls.h> dependency in the C
code by using the computed constant from <tcb-offsets.h>. <sysdep.h>
no longer includes these definitions, so there is no cyclic dependency
anymore when computing the <tcb-offsets.h> constants.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This addition to the list of source headers in
sysdeps/mach/hurd/bits/errno.h appears in the source tree after
build-many-glibcs.py runs, I'm guessing resulting from gnumach commit
c566ad85a2d6728ebc8ec0f461a3b35df300e96e.
Use INTERNAL_SYSCALL_CALL instead of INLINE_SYSCALL_CALL. This
requires emulate the semantic for hurd call (so __arc4random_buf
uses the fallback).
Checked on x86_64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Non-at functions can be implemented by just calling the corresponding at
function with AT_FDCWD and zero at_flags.
In the linkat case, the at behavior is different (O_NOLINK), so this introduces
__linkat_common to pass O_NOLINK as appropriate.
lstat functions can also be implemented with fstatat by adding
__fstatat64_common which takes a flags parameter in addition to the at_flags
parameter,
In the end this factorizes chmod, chown, link, lstat64, mkdir, readlink,
rename, stat64, symlink, unlink, utimes.
This also makes __lstat, __lxstat64, __stat and __xstat64 directly use
__fstatat64_common instead of __lstat64 or __stat64.
9e5c991106 ("hurd: Fix readlink() hanging on fifo") separated opening
the file for the stat call from opening the file for the read call. That
however opened a small window for the file to change. Better make this
atomic by reopening the file with O_READ.
readlink() opens the target with O_READ to be able to read the symlink
content. When the target is actually a fifo, that would hang waiting for a
writer (caught in the coreutils testsuite). We thus have to first lookup the
target without O_READ to perform io_stat and lookout for fifos, and only
after checking the symlink type, we can re-lookup with O_READ.
In gnumach, 3e1702a65fb3 ("add rpc_versions for vm types") changed the type
of vm_size_t, making it always a unsigned long. This made it incompatible on
x86 with size_t. Even if we may want to revert it to unsigned int, it's
better to fix the types of parameters according to the .defs files.
posix advises to have strerror_r fill a message even when we are returning
an error.
This makes mach's xpg_strerror_r do this, like the generic version does.
Spotted by the libunistring testsuite test-strerror_r
08d2024b41 ("string: Simplify strerror_r") inadvertently made
__strerror_r print unknown error system in decimal while the original
code was printing it in hexadecimal. perror was kept printing in
hexadecimal in 725eeb4af1 ("string: Use tls-internal on strerror_l"),
let us keep both coherent.
This also fixes a duplicate ':'
Spotted by the libunistring testsuite test-perror2
gcc introduces gs:0x14 accesses in most functions, so we need some tcbhead
to be ready very early during initialization. This configures a static area
which can be referenced by various protected functions, until proper TLS is
set up.
We do not have a hurd data block only when bootstrapping the system, in
which case we don't have a notion of suid yet anyway.
This is needed, otherwise init_standard_fds would check that standard
file descriptors are allocated, which is meaningless during bootstrap.
The inline and library functions that the CMSG_NXTHDR macro may expand
to increment the pointer to the header before checking the stride of
the increment against available space. Since C only allows incrementing
pointers to one past the end of an array, the increment must be done
after a length check. This commit fixes that and includes a regression
test for CMSG_FIRSTHDR and CMSG_NXTHDR.
The Linux, Hurd, and generic headers are all changed.
Tested on Linux on armv7hl, i686, x86_64, aarch64, ppc64le, and s390x.
[BZ #28846]
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Rather than buffering 16 MiB of entropy in userspace (by way of
chacha20), simply call getrandom() every time.
This approach is doubtlessly slower, for now, but trying to prematurely
optimize arc4random appears to be leading toward all sorts of nasty
properties and gotchas. Instead, this patch takes a much more
conservative approach. The interface is added as a basic loop wrapper
around getrandom(), and then later, the kernel and libc together can
work together on optimizing that.
This prevents numerous issues in which userspace is unaware of when it
really must throw away its buffer, since we avoid buffering all
together. Future improvements may include userspace learning more from
the kernel about when to do that, which might make these sorts of
chacha20-based optimizations more possible. The current heuristic of 16
MiB is meaningless garbage that doesn't correspond to anything the
kernel might know about. So for now, let's just do something
conservative that we know is correct and won't lead to cryptographic
issues for users of this function.
This patch might be considered along the lines of, "optimization is the
root of all evil," in that the much more complex implementation it
replaces moves too fast without considering security implications,
whereas the incremental approach done here is a much safer way of going
about things. Once this lands, we can take our time in optimizing this
properly using new interplay between the kernel and userspace.
getrandom(0) is used, since that's the one that ensures the bytes
returned are cryptographically secure. But on systems without it, we
fallback to using /dev/urandom. This is unfortunate because it means
opening a file descriptor, but there's not much of a choice. Secondly,
as part of the fallback, in order to get more or less the same
properties of getrandom(0), we poll on /dev/random, and if the poll
succeeds at least once, then we assume the RNG is initialized. This is a
rough approximation, as the ancient "non-blocking pool" initialized
after the "blocking pool", not before, and it may not port back to all
ancient kernels, though it does to all kernels supported by glibc
(≥3.2), so generally it's the best approximation we can do.
The motivation for including arc4random, in the first place, is to have
source-level compatibility with existing code. That means this patch
doesn't attempt to litigate the interface itself. It does, however,
choose a conservative approach for implementing it.
Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Cristian Rodríguez <crrodriguez@opensuse.org>
Cc: Paul Eggert <eggert@cs.ucla.edu>
Cc: Mark Harris <mark.hsj@gmail.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The implementation is based on scalar Chacha20 with per-thread cache.
It uses getrandom or /dev/urandom as fallback to get the initial entropy,
and reseeds the internal state on every 16MB of consumed buffer.
To improve performance and lower memory consumption the per-thread cache
is allocated lazily on first arc4random functions call, and if the
memory allocation fails getentropy or /dev/urandom is used as fallback.
The cache is also cleared on thread exit iff it was initialized (so if
arc4random is not called it is not touched).
Although it is lock-free, arc4random is still not async-signal-safe
(the per thread state is not updated atomically).
The ChaCha20 implementation is based on RFC8439 [1], omitting the final
XOR of the keystream with the plaintext because the plaintext is a
stream of zeros. This strategy is similar to what OpenBSD arc4random
does.
The arc4random_uniform is based on previous work by Florian Weimer,
where the algorithm is based on Jérémie Lumbroso paper Optimal Discrete
Uniform Generation from Coin Flips, and Applications (2013) [2], who
credits Donald E. Knuth and Andrew C. Yao, The complexity of nonuniform
random number generation (1976), for solving the general case.
The main advantage of this method is the that the unit of randomness is not
the uniform random variable (uint32_t), but a random bit. It optimizes the
internal buffer sampling by initially consuming a 32-bit random variable
and then sampling byte per byte. Depending of the upper bound requested,
it might lead to better CPU utilization.
Checked on x86_64-linux-gnu, aarch64-linux, and powerpc64le-linux-gnu.
Co-authored-by: Florian Weimer <fweimer@redhat.com>
Reviewed-by: Yann Droneaud <ydroneaud@opteya.com>
[1] https://datatracker.ietf.org/doc/html/rfc8439
[2] https://arxiv.org/pdf/1304.1916.pdf
This change provides implementations for the mbrtoc8 and c8rtomb
functions adopted for C++20 via WG21 P0482R6 and for C2X via WG14
N2653. It also provides the char8_t typedef from WG14 N2653.
The mbrtoc8 and c8rtomb functions are declared in uchar.h in C2X
mode or when the _GNU_SOURCE macro or C++20 __cpp_char8_t feature
test macro is defined.
The char8_t typedef is declared in uchar.h in C2X mode or when the
_GNU_SOURCE macro is defined and the C++20 __cpp_char8_t feature
test macro is not defined (if __cpp_char8_t is defined, then char8_t
is a builtin type).
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
It was added on Linux 5.4 (3695eae5fee0605f316fbaad0b9e3de791d7dfaf)
to extend waitid to wait on pidfd.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
When an executable is invoked as
./ld.so [ld.so-args] ./exe [exe-args]
then the argv is adujusted in ld.so before calling the entry point of
the executable so ld.so args are not visible to it. On most targets
this requires moving argv, env and auxv on the stack to ensure correct
stack alignment at the entry point. This had several issues:
- The code for this adjustment on the stack is written in asm as part
of the target specific ld.so _start code which is hard to maintain.
- The adjustment is done after _dl_start returns, where it's too late
to update GLRO(dl_auxv), as it is already readonly, so it points to
memory that was clobbered by the adjustment. This is bug 23293.
- _environ is also wrong in ld.so after the adjustment, but it is
likely not used after _dl_start returns so this is not user visible.
- _dl_argv was updated, but for this it was moved out of relro, which
changes security properties across targets unnecessarily.
This patch introduces a generic _dl_start_args_adjust function that
handles the argument adjustments after ld.so processed its own args
and before relro protection is applied.
The same algorithm is used on all targets, _dl_skip_args is now 0, so
existing target specific adjustment code is no longer used. The bug
affects aarch64, alpha, arc, arm, csky, ia64, nios2, s390-32 and sparc,
other targets don't need the change in principle, only for consistency.
The GNU Hurd start code relied on _dl_skip_args after dl_main returned,
now it checks directly if args were adjusted and fixes the Hurd startup
data accordingly.
Follow up patches can remove _dl_skip_args and DL_ARGV_NOT_RELRO.
Tested on aarch64-linux-gnu and cross tested on i686-gnu.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The siglist.c is built with -fno-toplevel-reorder to avoid compiler
to reorder the compat assembly directives due an assembler
issue [1] (fixed on 2.39).
This patch removes the compiler flags by split the compat symbol
generation in two phases. First the __sys_siglist and __sys_sigabbrev
without any compat symbol directive is preprocessed to generate an
assembly source code. This generate assembly is then used as input
on a platform agnostic siglist.S which then creates the compat
definitions. This prevents compiler to move any compat directive
prior the _sys_errlist definition itself.
Checked on a make check run-built-tests=no on all affected ABIs.
Reviewed-by: Fangrui Song <maskray@google.com>
The errlist.c is built with -fno-toplevel-reorder to avoid compiler to
reorder the compat assembly directives due an assembler issue [1]
(fixed on 2.39).
This patch removes the compiler flags by split the compat symbol
generation in two phases. First the _sys_errlist_internal internal
without any compat symbol directive is preprocessed to generate an
assembly source code. This generate assembly is then used as input
on a platform agnostic errlist-data.S which then creates the compat
definitions. This prevents compiler to move any compat directive
prior the _sys_errlist_internal definition itself.
Checked on a make check run-built-tests=no on all affected ABIs.
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=29012
After 73fc4e28b9,
__libc_enable_secure_decided is always 0 and a statically linked
executable may overwrite __libc_enable_secure without considering
AT_SECURE.
The __libc_enable_secure has been correctly initialized in _dl_aux_init,
so just remove __libc_enable_secure_decided and __libc_init_secure.
This allows us to remove some startup_get*id functions from
22b79ed7f4.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
The loader does not need to pull all __get_errlist definitions
and its size is decreased:
Before:
$ size elf/ld.so
text data bss dec hex filename
197774 11024 456 209254 33166 elf/ld.so
After:
$ size elf/ld.so
text data bss dec hex filename
191510 9936 456 201902 314ae elf/ld.so
Checked on x86_64-linux-gnu.
The posix_spawnattr_tcsetpgrp_np works on a file descriptor (the
controlling terminal), so it would make more sense to actually fit
it on the file actions API.
Also, POSIX_SPAWN_TCSETPGROUP is not really required since it is
implicit by the presence of tcsetpgrp file action.
The posix/tst-spawn6.c is also fixed when TTY can is not present.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
It is not Hurd-specific, but H.J. Lu wants it there.
Also, dc.a can be used to avoid hardcoding .long vs .quad and thus use
the same implementation for i386 and x86_64.
The glibc 2.34 release really should have added a GLIBC_2.34
symbol to the dynamic loader. With it, we could move functions such
as dlopen or pthread_key_create that work on process-global state
into the dynamic loader (once we have fixed a longstanding issue
with static linking). Without the GLIBC_2.34 symbol, yet another
new symbol version would be needed because old glibc will fail to
load binaries due to the missing symbol version in ld.so that newly
linked programs will require.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
Currently there is no proper way to set the controlling terminal through
posix_spawn in race free manner [1]. This forces shell implementations
to keep using fork+exec when launching background process groups,
even when using posix_spawn yields better performance.
This patch adds a new GNU extension so the creating process can
configure the created process terminal group. This is done with a new
flag, POSIX_SPAWN_TCSETPGROUP, along with two new attribute functions:
posix_spawnattr_tcsetpgrp_np, and posix_spawnattr_tcgetpgrp_np.
The function sets a new attribute, spawn-tcgroupfd, that references to
the controlling terminal.
The controlling terminal is set after the spawn-pgroup attribute, and
uses the spawn-tcgroupfd along with current creating process group
(so it is composable with POSIX_SPAWN_SETPGROUP).
To create a process and set the controlling terminal, one can use the
following sequence:
posix_spawnattr_t attr;
posix_spawnattr_init (&attr);
posix_spawnattr_setflags (&attr, POSIX_SPAWN_TCSETPGROUP);
posix_spawnattr_tcsetpgrp_np (&attr, tcfd);
If the idea is also to create a new process groups:
posix_spawnattr_t attr;
posix_spawnattr_init (&attr);
posix_spawnattr_setflags (&attr, POSIX_SPAWN_TCSETPGROUP
| POSIX_SPAWN_SETPGROUP);
posix_spawnattr_tcsetpgrp_np (&attr, tcfd);
posix_spawnattr_setpgroup (&attr, 0);
The controlling terminal file descriptor is ignored if the new flag is
not set.
This interface is slight different than the one provided by QNX [2],
which only provides the POSIX_SPAWN_TCSETPGROUP flag. The QNX
documentation does not specify how the controlling terminal is obtained
nor how it iteracts with POSIX_SPAWN_SETPGROUP. Since a glibc
implementation is library based, it is more straightforward and avoid
requires additional file descriptor operations to request the caller
to setup the controlling terminal file descriptor (and it also allows
a bit less error handling by posix_spawn).
Checked on x86_64-linux-gnu and i686-linux-gnu.
[1] https://github.com/ksh93/ksh/issues/79
[2] https://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.lib_ref/topic/p/posix_spawn.html
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>