When an TLS destructor is registered, we set the DF_1_NODELETE flag to
signal that the object should not be destroyed. We then clear the
DF_1_NODELETE flag when all destructors are called, which is wrong -
the flag could have been set by other means too.
This patch replaces this use of the flag by using l_tls_dtor_count
directly to determine whether it is safe to unload the object. This
change has the added advantage of eliminating the lock taking when
calling the destructors, which could result in a deadlock. The patch
also fixes the test case tst-tls-atexit - it was making an invalid
dlclose call, which would just return an error silently.
I have also added a detailed note on concurrency which also aims to
justify why I chose the semantics I chose for accesses to
l_tls_dtor_count. Thanks to Torvald for his help in getting me
started on this and (literally) teaching my how to approach the
problem.
Change verified on x86_64; the test suite does not show any
regressions due to the patch.
ChangeLog:
[BZ #18657]
* elf/dl-close.c (_dl_close_worker): Don't unload DSO if there
are pending TLS destructor calls.
* include/link.h (struct link_map): Add concurrency note for
L_TLS_DTOR_COUNT.
* stdlib/cxa_thread_atexit_impl.c (__cxa_thread_atexit_impl):
Don't touch the link map flag. Atomically increment
l_tls_dtor_count.
(__call_tls_dtors): Atomically decrement l_tls_dtor_count.
Avoid taking the load lock and don't touch the link map flag.
* stdlib/tst-tls-atexit-nodelete.c: New test case.
* stdlib/Makefile (tests): Use it.
* stdlib/tst-tls-atexit.c (do_test): dlopen
tst-tls-atexit-lib.so again before dlclose. Add conditionals
to allow tst-tls-atexit-nodelete test case to use it.