1. Add CPUID_INDEX_14_ECX_0 for CPUID leaf 0x14 to detect PTWRITE feature
in EBX of CPUID leaf 0x14 with ECX == 0.
2. Add PTWRITE detection to CPU feature tests.
3. Add 2 static CPU feature tests.
commit 94cd37ebb2
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Wed Sep 16 05:27:32 2020 -0700
x86: Use HAS_CPU_FEATURE with IBT and SHSTK [BZ #26625]
broke
GLIBC_TUNABLES=glibc.cpu.hwcaps=-IBT,-SHSTK
since it can no longer disable IBT nor SHSTK. Handle IBT and SHSTK with:
1. Revert commit 94cd37ebb2.
2. Clears the usable CET feature bits if kernel doesn't support CET.
3. Add GLIBC_TUNABLES tests without dlopen.
4. Add tests to verify that CPU_FEATURE_USABLE on IBT and SHSTK matches
_get_ssp.
5. Update GLIBC_TUNABLES tests with dlopen to verify that CET is disabled
with GLIBC_TUNABLES.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
In <sys/platform/x86.h>, define CPU features as enum instead of using
the C preprocessor magic to make it easier to wrap this functionality
in other languages. Move the C preprocessor magic to internal header
for better GCC codegen when more than one features are checked in a
single expression as in x86-64 dl-hwcaps-subdirs.c.
1. Rename COMMON_CPUID_INDEX_XXX to CPUID_INDEX_XXX.
2. Move CPUID_INDEX_MAX to sysdeps/x86/include/cpu-features.h.
3. Remove struct cpu_features and __x86_get_cpu_features from
<sys/platform/x86.h>.
4. Add __x86_get_cpuid_feature_leaf to <sys/platform/x86.h> and put it
in libc.
5. Make __get_cpu_features() private to glibc.
6. Replace __x86_get_cpu_features(N) with __get_cpu_features().
7. Add _dl_x86_get_cpu_features to GLIBC_PRIVATE.
8. Use a single enum index for each CPU feature detection.
9. Pass the CPUID feature leaf to __x86_get_cpuid_feature_leaf.
10. Return zero struct cpuid_feature for the older glibc binary with a
smaller CPUID_INDEX_MAX [BZ #27104].
11. Inside glibc, use the C preprocessor magic so that cpu_features data
can be loaded just once leading to more compact code for glibc.
256 bits are used for each CPUID leaf. Some leaves only contain a few
features. We can add exceptions to such leaves. But it will increase
code sizes and it is harder to provide backward/forward compatibilities
when new features are added to such leaves in the future.
When new leaves are added, _rtld_global_ro offsets will change which
leads to race condition during in-place updates. We may avoid in-place
updates by
1. Rename the old glibc.
2. Install the new glibc.
3. Remove the old glibc.
NB: A function, __x86_get_cpuid_feature_leaf , is used to avoid the copy
relocation issue with IFUNC resolver as shown in IFUNC resolver tests.
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
Add Intel Linear Address Masking (LAM) support to <sys/platform/x86.h>.
HAS_CPU_FEATURE (LAM) can be used to detect if LAM is enabled in CPU.
LAM modifies the checking that is applied to 64-bit linear addresses,
allowing software to use of the untranslated address bits for metadata.
commit 04bba1e5d8
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Wed Aug 5 13:51:56 2020 -0700
x86: Set CPU usable feature bits conservatively [BZ #26552]
Set CPU usable feature bits only for CPU features which are usable in
user space and whose usability can be detected from user space, excluding
features like FSGSBASE whose enable bit can only be checked in the kernel.
no longer turns on the usable bits of IBT and SHSTK since we don't know
if IBT and SHSTK are usable until much later. Use HAS_CPU_FEATURE to
check if the processor supports IBT and SHSTK.
Add Intel Key Locker:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html
support to <sys/platform/x86.h>. Intel Key Locker has
1. KL: AES Key Locker instructions.
2. WIDE_KL: AES wide Key Locker instructions.
3. AESKLE: AES Key Locker instructions are enabled by OS.
Applications should use
if (CPU_FEATURE_USABLE (KL))
and
if (CPU_FEATURE_USABLE (WIDE_KL))
to check if AES Key Locker instructions and AES wide Key Locker
instructions are usable.
Install <sys/platform/x86.h> so that programmers can do
#if __has_include(<sys/platform/x86.h>)
#include <sys/platform/x86.h>
#endif
...
if (CPU_FEATURE_USABLE (SSE2))
...
if (CPU_FEATURE_USABLE (AVX2))
...
<sys/platform/x86.h> exports only:
enum
{
COMMON_CPUID_INDEX_1 = 0,
COMMON_CPUID_INDEX_7,
COMMON_CPUID_INDEX_80000001,
COMMON_CPUID_INDEX_D_ECX_1,
COMMON_CPUID_INDEX_80000007,
COMMON_CPUID_INDEX_80000008,
COMMON_CPUID_INDEX_7_ECX_1,
/* Keep the following line at the end. */
COMMON_CPUID_INDEX_MAX
};
struct cpuid_features
{
struct cpuid_registers cpuid;
struct cpuid_registers usable;
};
struct cpu_features
{
struct cpu_features_basic basic;
struct cpuid_features features[COMMON_CPUID_INDEX_MAX];
};
/* Get a pointer to the CPU features structure. */
extern const struct cpu_features *__x86_get_cpu_features
(unsigned int max) __attribute__ ((const));
Since all feature checks are done through macros, programs compiled with
a newer <sys/platform/x86.h> are compatible with the older glibc binaries
as long as the layout of struct cpu_features is identical. The features
array can be expanded with backward binary compatibility for both .o and
.so files. When COMMON_CPUID_INDEX_MAX is increased to support new
processor features, __x86_get_cpu_features in the older glibc binaries
returns NULL and HAS_CPU_FEATURE/CPU_FEATURE_USABLE return false on the
new processor feature. No new symbol version is neeeded.
Both CPU_FEATURE_USABLE and HAS_CPU_FEATURE are provided. HAS_CPU_FEATURE
can be used to identify processor features.
Note: Although GCC has __builtin_cpu_supports, it only supports a subset
of <sys/platform/x86.h> and it is equivalent to CPU_FEATURE_USABLE. It
doesn't support HAS_CPU_FEATURE.
Intel64 and IA-32 Architectures Software Developer’s Manual has changed
the following CPU feature names:
1. The CPU feature of Enhanced Intel SpeedStep Technology is renamed
from EST to EIST.
2. The CPU feature which supports Platform Quality of Service Monitoring
(PQM) capability is changed to Intel Resource Director Technology
(Intel RDT) Monitoring capability, i.e. PQM is renamed to RDT_M.
3. The CPU feature which supports Platform Quality of Service
Enforcement (PQE) capability is changed to Intel Resource Director
Technology (Intel RDT) Allocation capability, i.e. PQE is renamed to
RDT_A.
Support usable check for all CPU features with the following changes:
1. Change struct cpu_features to
struct cpuid_features
{
struct cpuid_registers cpuid;
struct cpuid_registers usable;
};
struct cpu_features
{
struct cpu_features_basic basic;
struct cpuid_features features[COMMON_CPUID_INDEX_MAX];
unsigned int preferred[PREFERRED_FEATURE_INDEX_MAX];
...
};
so that there is a usable bit for each cpuid bit.
2. After the cpuid bits have been initialized, copy the known bits to the
usable bits. EAX/EBX from INDEX_1 and EAX from INDEX_7 aren't used for
CPU feature detection.
3. Clear the usable bits which require OS support.
4. If the feature is supported by OS, copy its cpuid bit to its usable
bit.
5. Replace HAS_CPU_FEATURE and CPU_FEATURES_CPU_P with CPU_FEATURE_USABLE
and CPU_FEATURE_USABLE_P to check if a feature is usable.
6. Add DEPR_FPU_CS_DS for INDEX_7_EBX_13.
7. Unset MPX feature since it has been deprecated.
The results are
1. If the feature is known and doesn't requre OS support, its usable bit
is copied from the cpuid bit.
2. Otherwise, its usable bit is copied from the cpuid bit only if the
feature is known to supported by OS.
3. CPU_FEATURE_USABLE/CPU_FEATURE_USABLE_P are used to check if the
feature can be used.
4. HAS_CPU_FEATURE/CPU_FEATURE_CPU_P are used to check if CPU supports
the feature.
An extension called extended feature disable (XFD) is an extension added
for Intel AMX to the XSAVE feature set that allows an operating system
to enable a feature while preventing specific user threads from using
the feature.
Intel Advanced Matrix Extensions (Intel AMX) is a new programming
paradigm consisting of two components: a set of 2-dimensional registers
(tiles) representing sub-arrays from a larger 2-dimensional memory image,
and accelerators able to operate on tiles. Intel AMX is an extensible
architecture. New accelerators can be added and the existing accelerator
may be enhanced to provide higher performance. The initial features are
AMX-BF16, AMX-TILE and AMX-INT8, which are usable only if the operating
system supports both XTILECFG state and XTILEDATA state.
Add AMX-BF16, AMX-TILE and AMX-INT8 support to HAS_CPU_FEATURE and
CPU_FEATURE_USABLE.
1. Divide architecture features into the usable features and the preferred
features. The usable features are for correctness and can be exported in
a stable ABI. The preferred features are for performance and only for
glibc internal use.
2. Change struct cpu_features to
struct cpu_features
{
struct cpu_features_basic basic;
unsigned int *usable_p;
struct cpuid_registers cpuid[COMMON_CPUID_INDEX_MAX];
unsigned int usable[USABLE_FEATURE_INDEX_MAX];
unsigned int preferred[PREFERRED_FEATURE_INDEX_MAX];
...
};
and initialize usable_p to pointer to the usable arary so that
struct cpu_features
{
struct cpu_features_basic basic;
unsigned int *usable_p;
struct cpuid_registers cpuid[COMMON_CPUID_INDEX_MAX];
};
can be exported via a stable ABI. The cpuid and usable arrays can be
expanded with backward binary compatibility for both .o and .so files.
3. Add COMMON_CPUID_INDEX_7_ECX_1 for AVX512_BF16.
4. Detect ENQCMD, PKS, AVX512_VP2INTERSECT, MD_CLEAR, SERIALIZE, HYBRID,
TSXLDTRK, L1D_FLUSH, CORE_CAPABILITIES and AVX512_BF16.
5. Rename CAPABILITIES to ARCH_CAPABILITIES.
6. Check if AVX512_VP2INTERSECT, AVX512_BF16 and PKU are usable.
7. Update CPU feature detection test.
Extend CPUID support for all feature bits from CPUID. Add a new macro,
CPU_FEATURE_USABLE, which can be used to check if a feature is usable at
run-time, instead of HAS_CPU_FEATURE and HAS_ARCH_FEATURE.
Add COMMON_CPUID_INDEX_D_ECX_1, COMMON_CPUID_INDEX_80000007 and
COMMON_CPUID_INDEX_80000008 to check CPU feature bits in them.
Tested on i686 and x86-64 as well as using build-many-glibcs.py with
x86 targets.
* sysdeps/x86/cacheinfo.c (intel_check_word): Updated for
cpu_features_basic.
(__cache_sysconf): Likewise.
(init_cacheinfo): Likewise.
* sysdeps/x86/cpu-features.c (get_extended_indeces): Also
populate COMMON_CPUID_INDEX_80000007 and
COMMON_CPUID_INDEX_80000008.
(get_common_indices): Also populate COMMON_CPUID_INDEX_D_ECX_1.
Use CPU_FEATURES_CPU_P (cpu_features, XSAVEC) to check if
XSAVEC is available. Set the bit_arch_XXX_Usable bits.
(init_cpu_features): Use _Static_assert on
index_arch_Fast_Unaligned_Load.
__get_cpuid_registers and __get_arch_feature. Updated for
cpu_features_basic. Set stepping in cpu_features.
* sysdeps/x86/cpu-features.h: (FEATURE_INDEX_1): Changed to enum.
(FEATURE_INDEX_2): New.
(FEATURE_INDEX_MAX): Changed to enum.
(COMMON_CPUID_INDEX_D_ECX_1): New.
(COMMON_CPUID_INDEX_80000007): Likewise.
(COMMON_CPUID_INDEX_80000008): Likewise.
(cpuid_registers): Likewise.
(cpu_features_basic): Likewise.
(CPU_FEATURE_USABLE): Likewise.
(bit_arch_XXX_Usable): Likewise.
(cpu_features): Use cpuid_registers and cpu_features_basic.
(bit_arch_XXX): Reweritten.
(bit_cpu_XXX): Likewise.
(index_cpu_XXX): Likewise.
(reg_XXX): Likewise.
* sysdeps/x86/tst-get-cpu-features.c: Include <stdio.h> and
<support/check.h>.
(CHECK_CPU_FEATURE): New.
(CHECK_CPU_FEATURE_USABLE): Likewise.
(cpu_kinds): Likewise.
(do_test): Print vendor, family, model and stepping. Check
HAS_CPU_FEATURE and CPU_FEATURE_USABLE.
(TEST_FUNCTION): Removed.
Include <support/test-driver.c> instead of
"../../test-skeleton.c".
* sysdeps/x86_64/multiarch/sched_cpucount.c (__sched_cpucount):
Check POPCNT instead of POPCOUNT.
* sysdeps/x86_64/multiarch/test-multiarch.c (do_test): Likewise.