On s390x I get the following werror when build with gcc 6.1 (or current gcc head) and -O3:
../sysdeps/ieee754/dbl-64/k_rem_pio2.c: In function ‘__kernel_rem_pio2’:
../sysdeps/ieee754/dbl-64/k_rem_pio2.c:254:18: error: array subscript is below array bounds [-Werror=array-bounds]
for (k = 1; iq[jk - k] == 0; k++)
~~^~~~~~~~
I get the same error with sysdeps/ieee754/flt-32/k_rem_pio2f.c.
This patch adds DIAG_* macros around it.
ChangeLog:
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
Use DIAG_*_NEEDS_COMMENT macro to get rid of array-bounds warning.
* sysdeps/ieee754/flt-32/k_rem_pio2f.c (__kernel_rem_pio2f):
Likewise.
sparc64 passes floating point values in the floating point registers.
As the the generic ceil, floor and trunc functions use integer
instructions, it makes sense to provide a VIS3 version consisting in
the the generic version compiled with -mvis3. GCC will then use
movdtox, movxtod, movwtos and movstow instructions.
sparc32 passes the floating point values in the integer registers, so it
doesn't make sense to do the same.
Changelog:
* sysdeps/ieee754/dbl-64/s_trunc.c: Avoid alias renamed.
* sysdeps/ieee754/dbl-64/wordsize-64/s_trunc.c: Likewise.
* sysdeps/ieee754/flt-32/s_truncf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/Makefile
[$(subdir) = math && $(have-as-vis3) = yes] (libm-sysdep_routines):
Add s_ceilf-vis3, s_ceil-vis3, s_floorf-vis3, s_floor-vis3,
s_truncf-vis3, s_trunc-vis3.
(CFLAGS-s_ceilf-vis3.c): New. Set to -Wa,-Av9d -mvis3.
(CFLAGS-s_ceil-vis3.c): Likewise.
(CFLAGS-s_floorf-vis3.c): Likewise.
(CFLAGS-s_floor-vis3.c): Likewise.
(CFLAGS-s_truncf-vis3.c): Likewise.
(CFLAGS-s_trunc-vis3.c): Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceil-vis3.c: New file.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceil.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceilf-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceilf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_trunc-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_trunc.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_truncf-vis3.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_truncf.c: Likewise.
TS 18661 adds nextup and nextdown functions alongside nextafter to provide
support for float128 equivalent to it. This patch adds nextupl, nextup,
nextupf, nextdownl, nextdown and nextdownf to libm before float128 support.
The nextup functions return the next representable value in the direction of
positive infinity and the nextdown functions return the next representable
value in the direction of negative infinity. These are currently enabled
as GNU extensions.
Various implementations of frexp functions return sNaN for sNaN
input. This patch fixes them to add such arguments to themselves so
that qNaN is returned.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #20250]
* sysdeps/i386/fpu/s_frexpl.S (__frexpl): Add non-finite input to
itself.
* sysdeps/ieee754/dbl-64/s_frexp.c (__frexp): Add non-finite or
zero input to itself.
* sysdeps/ieee754/dbl-64/wordsize-64/s_frexp.c (__frexp):
Likewise.
* sysdeps/ieee754/flt-32/s_frexpf.c (__frexpf): Likewise.
* sysdeps/ieee754/ldbl-128/s_frexpl.c (__frexpl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise.
* sysdeps/ieee754/ldbl-96/s_frexpl.c (__frexpl): Likewise.
* math/libm-test.inc (frexp_test_data): Add sNaN tests.
C99 and C11 allow but do not require ceil, floor, round and trunc to
raise the "inexact" exception for noninteger arguments. TS 18661-1
requires that this exception not be raised by these functions. This
aligns them with general IEEE semantics, where "inexact" is only
raised if the final step of rounding the infinite-precision result to
the result type is inexact; for these functions, the
infinite-precision integer result is always representable in the
result type, so "inexact" should never be raised.
The generic implementations of ceil, floor and round functions contain
code to force "inexact" to be raised. This patch removes it for round
functions to align them with TS 18661-1 in this regard. The tests
*are* updated by this patch; there are fewer architecture-specific
versions than for ceil and floor, and I fixed the powerpc ones some
time ago. If any others still have the issue, as shown by tests for
round failing with spurious exceptions, they can be fixed separately
by architecture maintainers or others.
Tested for x86_64, x86 and mips64.
[BZ #15479]
* sysdeps/ieee754/dbl-64/s_round.c (huge): Remove variable.
(__round): Do not force "inexact" exception.
* sysdeps/ieee754/dbl-64/wordsize-64/s_round.c (huge): Remove
variable.
(__round): Do not force "inexact" exception.
* sysdeps/ieee754/flt-32/s_roundf.c (huge): Remove variable.
(__roundf): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-128/s_roundl.c (huge): Remove variable.
(__roundl): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-96/s_roundl.c (huge): Remove variable.
(__roundl): Do not force "inexact" exception.
* math/libm-test.inc (round_test_data): Do not allow spurious
"inexact" exceptions.
C99 and C11 allow but do not require ceil, floor, round and trunc to
raise the "inexact" exception for noninteger arguments. TS 18661-1
requires that this exception not be raised by these functions. This
aligns them with general IEEE semantics, where "inexact" is only
raised if the final step of rounding the infinite-precision result to
the result type is inexact; for these functions, the
infinite-precision integer result is always representable in the
result type, so "inexact" should never be raised.
The generic implementations of ceil, floor and round functions contain
code to force "inexact" to be raised. This patch removes it for floor
functions to align them with TS 18661-1 in this regard. Note that
some architecture-specific versions may still raise "inexact", so the
tests are not updated and the bug is not yet fixed.
Tested for x86_64, x86 and mips64.
[BZ #15479]
* sysdeps/ieee754/dbl-64/s_floor.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__floor): Do not force "inexact" exception.
* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Do not mention
"inexact" exception in comment.
(huge): Remove variable.
(__floor): Do not force "inexact" exception.
* sysdeps/ieee754/flt-32/s_floorf.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__floorf): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-128/s_floorl.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__floorl): Do not force "inexact" exception.
C99 and C11 allow but do not require ceil, floor, round and trunc to
raise the "inexact" exception for noninteger arguments. TS 18661-1
requires that this exception not be raised by these functions. This
aligns them with general IEEE semantics, where "inexact" is only
raised if the final step of rounding the infinite-precision result to
the result type is inexact; for these functions, the
infinite-precision integer result is always representable in the
result type, so "inexact" should never be raised.
The generic implementations of ceil, floor and round functions contain
code to force "inexact" to be raised. This patch removes it for ceil
functions to align them with TS 18661-1 in this regard. Note that
some architecture-specific versions may still raise "inexact", so the
tests are not updated and the bug is not yet fixed.
Tested for x86_64, x86 and mips64.
[BZ #15479]
* sysdeps/ieee754/dbl-64/s_ceil.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__ceil): Do not force "inexact" exception.
* sysdeps/ieee754/dbl-64/wordsize-64/s_ceil.c: Do not mention
"inexact" exception in comment.
(huge): Remove variable.
(__ceil): Do not force "inexact" exception.
* sysdeps/ieee754/flt-32/s_ceilf.c (huge): Remove variable.
(__ceilf): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-128/s_ceill.c: Do not mention "inexact"
exception in comment.
(huge): Remove variable.
(__ceill): Do not force "inexact" exception.
nextafter and nexttoward fail to set errno on overflow and underflow.
This patch makes them do so in cases that should include all the cases
where such errno setting is required by glibc's goals for when to set
errno (but not all cases of underflow where the result is nonzero and
so glibc's goals do not require errno setting).
Tested for x86_64, x86, mips64 and powerpc.
[BZ #6799]
* math/s_nextafter.c: Include <errno.h>.
(__nextafter): Set errno on overflow and underflow.
* math/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Include <errno.h>.
(__nextafterf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Include <errno.h>.
(__nldbl_nexttowardf): Set errno on overflow and underflow.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* math/libm-test.inc (nextafter_test_data): Do not allow errno
setting to be missing on overflow. Add more tests.
(nexttoward_test_data): Likewise.
One common case of __GNUC_PREREQ (4, 7) conditionals is use of
diagnostic control pragmas for -Wmaybe-uninitialized, an option
introduced in GCC 4.7 where older GCC needed -Wuninitialized to be
controlled instead if the warning appeared with older GCC. This patch
removes such conditionals.
(There remain several older uses of -Wno-uninitialized in makefiles
that still need to be converted to diagnostic control pragmas if the
issue is still present with current sources and supported GCC
versions, and it's likely that in most cases those pragmas also will
end up controlling -Wmaybe-uninitialized.)
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch, except for libresolv
since res_send.c contains assertions whose line numbers are changed by
the patch).
* resolv/res_send.c (send_vc) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
* soft-fp/fmadf4.c [__GNUC_PREREQ (4, 7)]: Likewise.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* soft-fp/fmasf4.c [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* soft-fp/fmatf4.c [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* stdlib/setenv.c
[((__GNUC__ << 16) + __GNUC_MINOR__) >= ((4 << 16) + 7)]: Make
code unconditional.
[!(((__GNUC__ << 16) + __GNUC_MINOR__) >= ((4 << 16) + 7))]:
Remove conditional code.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c
(__ieee754_lgamma_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgamma_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c
(__ieee754_lgammaf_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgammaf_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/ldbl-128/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c
(__ieee754_lgammal_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgammal_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/ldbl-96/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
j1 and jn can underflow for small arguments, but fail to set errno
when underflowing to 0. This patch fixes them to set errno in that
case.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18611]
* sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Set errno and
avoid excess range and precision on underflow.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Set errno on
underflow.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Do not allow missing errno setting for
tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
For 32-bit MIPS and some other systems, various of the lrint, llrint,
lround, llround functions can be missing exceptions on overflow
because casts do not (in current GCC) result in the proper
exceptions. In the MIPS case there are two problems here: MIPS I code
generation uses an assembler macro that doesn't raise exceptions,
while the libgcc conversions of floating-point values to long long
also do not raise "invalid" on all overflow cases (and can raise
spurious "inexact").
This patch adds support in the generic code (only the functions for
which this problem has actually been seen) for forcing the "invalid"
exception in the problem cases, and enables that support for the
affected MIPS cases.
Tested for MIPS; also tested for x86_64 and x86 that installed
stripped shared libraries are unchanged by this patch.
[BZ #16399]
* sysdeps/generic/fix-fp-int-convert-overflow.h: New file.
* sysdeps/ieee754/dbl-64/s_llrint.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_llround.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lrint.c: Include
<fix-fp-int-convert-overflow.h>.
(__lrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lround.c: Include
<fix-fp-int-convert-overflow.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llroundf.c: Include <fenv.h>,
<limits.h> and <fix-fp-int-convert-overflow.h>.
(__llroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lroundf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h: New file.
On powerpc32 hard-float, older processors (ones where fcfid is not
available for 32-bit code), GCC generates conversions from integers to
floating point that wrongly convert integer 0 to -0 instead of +0 in
FE_DOWNWARD mode. This in turn results in logb and a few other
functions wrongly returning -0 when they should return +0.
This patch works around this issue in glibc as I proposed in
<https://sourceware.org/ml/libc-alpha/2015-09/msg00728.html>, so that
the affected functions can be correct and the affected tests pass in
the absence of a GCC fix for this longstanding issue (GCC bug 67771 -
if fixed, of course we can put in GCC version conditionals, and
eventually phase out the workarounds). A new macro
FIX_INT_FP_CONVERT_ZERO is added in a new sysdeps header
fix-int-fp-convert-zero.h, and the powerpc32/fpu version of that
header defines the macro based on the results of a configure test for
whether such conversions use the fcfid instruction.
Tested for x86_64 (that installed stripped shared libraries are
unchanged by the patch) and powerpc (that HAVE_PPC_FCFID comes out to
0 as expected and that the relevant tests are fixed). Also tested a
build with GCC configured for -mcpu=power4 and verified that
HAVE_PPC_FCFID comes out to 1 in that case.
There are still some other issues to fix to get test-float and
test-double passing cleanly for older powerpc32 processors (apart from
the need for an ulps regeneration for powerpc). (test-ldouble will be
harder to get passing cleanly, but with a combination of selected
fixes to ldbl-128ibm code that don't involve significant performance
issues, allowing spurious underflow and inexact exceptions for that
format, and lots of XFAILing for the default case of unpatched libgcc,
it should be doable.)
[BZ #887]
[BZ #19049]
[BZ #19050]
* sysdeps/generic/fix-int-fp-convert-zero.h: New file.
* sysdeps/ieee754/dbl-64/e_log10.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/e_log2.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_erf.c: Include
<fix-int-fp-convert-zero.h>.
(__erfc): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_logb.c: Include
<fix-int-fp-convert-zero.h>.
(__logb): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log10f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log2f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_erff.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_logbf.c: Include
<fix-int-fp-convert-zero.h>.
(__logbf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_erfl.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_logbl.c: Include
<fix-int-fp-convert-zero.h>.
(__logbl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/powerpc/powerpc32/fpu/configure.ac: New file.
* sysdeps/powerpc/powerpc32/fpu/configure: New generated file.
* sysdeps/powerpc/powerpc32/fpu/fix-int-fp-convert-zero.h: New
file.
* config.h.in [_LIBC] (HAVE_PPC_FCFID): New macro.
The flt-32 version of powf can be inaccurate because of bugs in the
extra-precision calculation of (x-1)/(x+1) or (x-1.5)/(x+1.5) as part
of calculating log(x) with extra precision: a constant used (as part
of adding 1 or 1.5 through integer arithmetic) is incorrect, and then
the code fails to mask a computed high part before using it in
arithmetic that relies on s_h*t_h being exactly representable. This
patch fixes these bugs.
Tested for x86_64 and x86. x86_64 ulps for powf removed and
regenerated to reflect reduced ulps from the increased accuracy for
existing tests.
[BZ #18956]
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Add 0x00400000
not 0x0040000 for high bit of mantissa. Mask with 0xfffff000 when
extracting high part.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
Similar to various other bugs in this area, pow functions can fail to
raise the underflow exception when the result is tiny and inexact but
one or more low bits of the intermediate result that is scaled down
(or, in the i386 case, converted from a wider evaluation format) are
zero. This patch forces the exception in a similar way to previous
fixes, thereby concluding the fixes for known bugs with missing
underflow exceptions currently filed in Bugzilla.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18825]
* sysdeps/i386/fpu/i386-math-asm.h (FLT_NARROW_EVAL_UFLOW_NONNAN):
New macro.
(DBL_NARROW_EVAL_UFLOW_NONNAN): Likewise.
(LDBL_CHECK_FORCE_UFLOW_NONNAN): Likewise.
* sysdeps/i386/fpu/e_pow.S: Use DEFINE_DBL_MIN.
(__ieee754_pow): Use DBL_NARROW_EVAL_UFLOW_NONNAN instead of
DBL_NARROW_EVAL, reloading the PIC register as needed.
* sysdeps/i386/fpu/e_powf.S: Use DEFINE_FLT_MIN.
(__ieee754_powf): Use FLT_NARROW_EVAL_UFLOW_NONNAN instead of
FLT_NARROW_EVAL. Use separate return path for case when first
argument is NaN.
* sysdeps/i386/fpu/e_powl.S: Include <i386-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN, reloading the
PIC register.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Force
underflow for subnormal result.
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Use
math_check_force_underflow_nonneg.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Use
math_check_force_underflow.
* sysdeps/x86_64/fpu/x86_64-math-asm.h
(LDBL_CHECK_FORCE_UFLOW_NONNAN): New macro.
* sysdeps/x86_64/fpu/e_powl.S: Include <x86_64-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.
sysdeps/ieee754/flt-32/e_exp2f.c declares two variable as "static
const volatile float". Maybe this use of "volatile" was originally
intended to inhibit optimization of underflowing / overflowing
operations such as TWOM100 * TWOM100; in any case, it's not currently
needed, as given -frounding-math constant folding of such expressions
is properly disabled when it would be unsafe. This patch removes the
unnecessary use of "volatile".
Tested for x86_64.
* sysdeps/ieee754/flt-32/e_exp2f.c (TWOM100): Remove volatile.
(TWO127): Likewise.
Where glibc code needs to avoid excess range and precision in
floating-point arithmetic, code variously uses either asms or volatile
to force the results of that arithmetic to memory; mostly this is
conditional on FLT_EVAL_METHOD, but in the case of lrint / llrint
functions some use of volatile is unconditional (and is present
unnecessarily in versions for long double). This patch make such code
use the recently-added math_narrow_eval macro consistently, removing
the unnecessary uses of volatile in long double lrint / llrint
implementations completely.
Tested for x86_64, x86, mips64 and powerpc.
* math/s_nexttowardf.c (__nexttowardf): Use math_narrow_eval.
* stdlib/strtod_l.c: Include <math_private.h>.
(overflow_value): Use math_narrow_eval.
(underflow_value): Likewise.
* sysdeps/i386/fpu/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c (__nexttowardf): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Likewise.
(__ieee754_gamma_r): Likewise.
* sysdeps/ieee754/dbl-64/gamma_productf.c (__gamma_productf):
Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
* sysdeps/ieee754/dbl-64/s_erf.c (__erfc): Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c (__llrint): Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c (__lrint): Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Likewise.
(__ieee754_gammaf_r): Likewise.
* sysdeps/ieee754/flt-32/k_rem_pio2f.c (__kernel_rem_pio2f):
Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
* sysdeps/ieee754/flt-32/s_erff.c (__erfcf): Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c (__llrintf): Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c (__lrintf): Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c (__llrintl): Do not use
volatile.
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl): Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c (__nexttoward): Use
math_narrow_eval.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-96/gamma_product.c (__gamma_product):
Likewise.
* sysdeps/ieee754/ldbl-96/s_llrintl.c (__llrintl): Do not use
volatile.
* sysdeps/ieee754/ldbl-96/s_lrintl.c (__lrintl): Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c (__nexttoward): Use
math_narrow_eval.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c (__nldbl_nexttowardf):
Likewise.
Various i386 libm functions return values with excess range and
precision; Wilco Dijkstra's patches to make isfinite etc. expand
inline cause this pre-existing issue to result in test failures (when
e.g. a result that overflows float but not long double gets counted as
overflowing for some purposes but not others).
This patch addresses those cases arising from functions defined in C,
adding a math_narrow_eval macro that forces values to memory to
eliminate excess precision if FLT_EVAL_METHOD indicates this is
needed, and is a no-op otherwise. I'll convert existing uses of
volatile and asm for this purpose to use the new macro later, once
i386 has clean test results again (which requires fixes for .S files
as well).
Tested for x86_64 and x86. Committed.
[BZ #18980]
* sysdeps/generic/math_private.h: Include <float.h>.
(math_narrow_eval): New macro.
[FLT_EVAL_METHOD != 0] (excess_precision): Likewise.
* sysdeps/ieee754/dbl-64/e_cosh.c (__ieee754_cosh): Use
math_narrow_eval on overflowing return value.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r):
Likewise.
* sysdeps/ieee754/dbl-64/e_sinh.c (__ieee754_sinh): Likewise.
* sysdeps/ieee754/flt-32/e_coshf.c (__ieee754_coshf): Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r):
Likewise.
* sysdeps/ieee754/flt-32/e_sinhf.c (__ieee754_sinhf): Likewise.
Bug 15384 notes that in __finite, two different constants are used
that could be the same constant (the result only depends on the
exponent of the floating-point representation), and that using the
same constant is better for architectures where constants need loading
from a constant pool. This patch implements that change.
Tested for x86_64, mips64 and powerpc.
[BZ #15384]
* sysdeps/ieee754/dbl-64/s_finite.c (FINITE): Use same constant as
bit-mask as in subtraction.
* sysdeps/ieee754/dbl-64/wordsize-64/s_finite.c (__finite):
Likewise.
* sysdeps/ieee754/flt-32/s_finitef.c (FINITEF): Likewise.
* sysdeps/ieee754/ldbl-128/s_finitel.c (__finitel): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_finitel.c (__finitel): Likewise.
Similar to various other bugs in this area, tgamma functions can fail
to raise the underflow exception when the result is tiny and inexact
but one or more low bits of the intermediate result that is scaled
down are zero. This patch forces the exception in a similar way to
previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18951]
* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r): Force
underflow exception for small results.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* math/auto-libm-test-in: Add more tests of tgamma.
* math/auto-libm-test-out: Regenerated.
As noted in bug 6803, scalbn fails to set errno on overflow and
underflow. This patch fixes this by making scalbn an alias of ldexp,
which has exactly the same semantics (for floating-point types with
radix 2) and already has wrappers that deal with setting errno,
instead of an alias of the internal __scalbn (which ldexp calls).
Notes:
* Where compat symbols were defined for scalbn functions, I didn't
change what they point to (to keep the patch minimal), so such
compat symbols continue to go directly to the non-errno-setting
functions.
* Mike, I didn't do anything with the IA64 versions of these
functions, where I think both the ldexp and scalbn functions already
deal with setting errno. As a cleanup (not needed to fix this bug)
however you might want to make those functions into aliases for
IA64; there is no need for them to be separate function
implementations at all.
* This concludes the fix for bug 6803 since the scalb and scalbln
cases of that bug were fixed some time ago.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #6803]
* math/s_ldexp.c (scalbn): Define as weak alias of __ldexp.
[NO_LONG_DOUBLE] (scalbnl): Define as weak alias of __ldexp.
* math/s_ldexpf.c (scalbnf): Define as weak alias of __ldexpf.
* math/s_ldexpl.c (scalbnl): Define as weak alias of __ldexpl.
* sysdeps/i386/fpu/s_scalbn.S (scalbn): Remove alias.
* sysdeps/i386/fpu/s_scalbnf.S (scalbnf): Likewise.
* sysdeps/i386/fpu/s_scalbnl.S (scalbnl): Likewise.
* sysdeps/ieee754/dbl-64/s_scalbn.c (scalbn): Likewise.
[NO_LONG_DOUBLE] (scalbnl): Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_scalbn.c (scalbn):
Likewise.
[NO_LONG_DOUBLE] (scalbnl): Likewise.
* sysdeps/ieee754/flt-32/s_scalbnf.c (scalbnf): Likewise.
* sysdeps/ieee754/ldbl-128/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (scalbnl): Remove
long_double_symbol calls.
* sysdeps/ieee754/ldbl-64-128/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/ieee754/ldbl-opt/s_ldexpl.c (__ldexpl_2): Define as
strong alias of __ldexpl.
(scalbnl): Define using long_double_symbol.
* sysdeps/m68k/m680x0/fpu/s_scalbn.c (__CONCATX(scalbn,suffix)):
Remove alias.
* sysdeps/sparc/sparc64/soft-fp/s_scalbnl.c (scalbnl): Likewise.
* sysdeps/x86_64/fpu/s_scalbnl.S (scalbnl): Likewise.
* math/libm-test.inc (scalbn_test_data): Add errno expectations.
(scalbln_test_data): Add more errno expectations.
Bug 15918 points out that the handling of infinities in hypotf can be
simplified: it's enough to return the absolute value of the infinite
argument without first comparing it to the other argument and possibly
returning that other argument's absolute value. This patch makes that
cleanup (which should not change how hypotf behaves on any input).
Tested for x86_64.
[BZ #15918]
* sysdeps/ieee754/flt-32/e_hypotf.c (__ieee754_hypotf): Simplify
handling of cases where one argument is an infinity.
Various exp2 implementations in glibc can miss underflow exceptions
when the scaling down part of the calculation is exact (or, in the x86
case, when the conversion from extended precision to the target
precision is exact). This patch forces the exception in a similar way
to previous fixes.
The x86 exp2f changes may in fact not be needed for this purpose -
it's likely to be the case that no argument of type float has an exp2
result so close to an exact subnormal float value that it equals that
value when rounded to 64 bits (even taking account of variation
between different x86 implementations). However, they are included
for consistency with the changes to exp2 and so as to fix the exp2f
part of bug 18875 by ensuring that excess range and precision is
removed from underflowing return values.
Tested for x86_64, x86 and mips64.
[BZ #16521]
[BZ #18875]
* math/e_exp2l.c (__ieee754_exp2l): Force underflow exception for
small results.
* sysdeps/i386/fpu/e_exp2.S (dbl_min): New object.
(MO): New macro.
(__ieee754_exp2): For small results, force underflow exception and
remove excess range and precision from return value.
* sysdeps/i386/fpu/e_exp2f.S (flt_min): New object.
(MO): New macro.
(__ieee754_exp2f): For small results, force underflow exception
and remove excess range and precision from return value.
* sysdeps/i386/fpu/e_exp2l.S (ldbl_min): New object.
(MO): New macro.
(__ieee754_exp2l): Force underflow exception for small results.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Likewise.
* sysdeps/x86_64/fpu/e_exp2l.S (ldbl_min): New object.
(MO): New macro.
(__ieee754_exp2l): Force underflow exception for small results.
* math/auto-libm-test-in: Add more tests or exp2.
* math/auto-libm-test-out: Regenerated.
The existing implementations of lgamma functions (except for the ia64
versions) use the reflection formula for negative arguments. This
suffers large inaccuracy from cancellation near zeros of lgamma (near
where the gamma function is +/- 1).
This patch fixes this inaccuracy. For arguments above -2, there are
no zeros and no large cancellation, while for sufficiently large
negative arguments the zeros are so close to integers that even for
integers +/- 1ulp the log(gamma(1-x)) term dominates and cancellation
is not significant. Thus, it is only necessary to take special care
about cancellation for arguments around a limited number of zeros.
Accordingly, this patch uses precomputed tables of relevant zeros,
expressed as the sum of two floating-point values. The log of the
ratio of two sines can be computed accurately using log1p in cases
where log would lose accuracy. The log of the ratio of two gamma(1-x)
values can be computed using Stirling's approximation (the difference
between two values of that approximation to lgamma being computable
without computing the two values and then subtracting), with
appropriate adjustments (which don't reduce accuracy too much) in
cases where 1-x is too small to use Stirling's approximation directly.
In the interval from -3 to -2, using the ratios of sines and of
gamma(1-x) can still produce too much cancellation between those two
parts of the computation (and that interval is also the worst interval
for computing the ratio between gamma(1-x) values, which computation
becomes more accurate, while being less critical for the final result,
for larger 1-x). Because this can result in errors slightly above
those accepted in glibc, this interval is instead dealt with by
polynomial approximations. Separate polynomial approximations to
(|gamma(x)|-1)(x-n)/(x-x0) are used for each interval of length 1/8
from -3 to -2, where n (-3 or -2) is the nearest integer to the
1/8-interval and x0 is the zero of lgamma in the relevant half-integer
interval (-3 to -2.5 or -2.5 to -2).
Together, the two approaches are intended to give sufficient accuracy
for all negative arguments in the problem range. Outside that range,
the previous implementation continues to be used.
Tested for x86_64, x86, mips64 and powerpc. The mips64 and powerpc
testing shows up pre-existing problems for ldbl-128 and ldbl-128ibm
with large negative arguments giving spurious "invalid" exceptions
(exposed by newly added tests for cases this patch doesn't affect the
logic for); I'll address those problems separately.
[BZ #2542]
[BZ #2543]
[BZ #2558]
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r): Call
__lgamma_neg for arguments from -28.0 to -2.0.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Call
__lgamma_negf for arguments from -15.0 to -2.0.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -48.0 or -50.0 to -2.0.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -33.0 to -2.0.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: New file.
* sysdeps/ieee754/dbl-64/lgamma_product.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_productf.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_product.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_productl.c: Likewise.
* sysdeps/generic/math_private.h (__lgamma_negf): New prototype.
(__lgamma_neg): Likewise.
(__lgamma_negl): Likewise.
(__lgamma_product): Likewise.
(__lgamma_productl): Likewise.
* math/Makefile (libm-calls): Add lgamma_neg and lgamma_product.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Similar to various other bugs in this area, some tanh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16520]
* sysdeps/ieee754/dbl-64/s_tanh.c: Include <float.h>.
(__tanh): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/s_tanhf.c: Include <float.h>.
(__tanhf): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_tanhl.c: Include <float.h>.
(__tanhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c: Include <float.h>.
(__tanhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-96/s_tanhl.c: Include <float.h>.
(__tanhl): Force underflow exception for arguments with small
absolute value.
* math/auto-libm-test-in: Add more tests of tanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
Similar to various other bugs in this area, some tan implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16517]
* sysdeps/ieee754/dbl-64/s_tan.c: Include <float.h>.
(tan): Force underflow exception for arguments with small absolute
value.
* sysdeps/ieee754/flt-32/k_tanf.c: Include <float.h>.
(__kernel_tanf): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/k_tanl.c: Include <float.h>.
(__kernel_tanl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c: Include <float.h>.
(__kernel_tanl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-96/k_tanl.c: Include <float.h>.
(__kernel_tanl): Force underflow exception for arguments with
small absolute value.
* math/auto-libm-test-in: Add more tests of tan.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some sinh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16519]
* sysdeps/ieee754/dbl-64/e_sinh.c: Include <float.h>.
(__ieee754_sinh): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/flt-32/e_sinhf.c: Include <float.h>.
(__ieee754_sinhf): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/e_sinhl.c: Include <float.h>.
(__ieee754_sinhl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/e_sinhl.c: Include <float.h>.
(__ieee754_sinhl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-96/e_sinhl.c: Include <float.h>.
(__ieee754_sinhl): Force underflow exception for arguments with
small absolute value.
* math/auto-libm-test-in: Add more tests of sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
The flt-32 implementation of powf wrongly uses x-1 instead of |x|-1
when computing log (x) for the case where |x| is close to 1 and y is
large. This patch fixes the logic accordingly. Relevant tests
existed for x close to 1, and corresponding tests are added for x
close to -1, as well as for some new variant cases.
Tested for x86_64 and x86.
[BZ #18647]
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): For large y
and |x| close to 1, use absolute value of x when computing log.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.
In non-default rounding modes, tgamma can be slightly less accurate
than permitted by glibc's accuracy goals.
Part of the problem is error accumulation, addressed in this patch by
setting round-to-nearest for internal computations. However, there
was also a bug in the code dealing with computing pow (x + n, x + n)
where x + n is not exactly representable, providing another source of
error even in round-to-nearest mode; it was necessary to address both
bugs to get errors for all testcases within glibc's accuracy goals.
Given this second fix, accuracy in round-to-nearest mode is also
improved (hence regeneration of ulps for tgamma should be from scratch
- truncate libm-test-ulps or at least remove existing tgamma entries -
so that the expected ulps can be reduced).
Some additional complications also arose. Certain tgamma tests should
strictly, according to IEEE semantics, overflow or not depending on
the rounding mode; this is beyond the scope of glibc's accuracy goals
for any function without exactly-determined results, but
gen-auto-libm-tests doesn't handle being lax there as it does for
underflow. (libm-test.inc also doesn't handle being lax about whether
the result in cases very close to the overflow threshold is infinity
or a finite value close to overflow, but that doesn't cause problems
in this case though I've seen it cause problems with random test
generation for some functions.) Thus, spurious-overflow markings,
with a comment, are added to auto-libm-test-in (no bug in Bugzilla
because the issue is with the testsuite, not a user-visible bug in
glibc). And on x86, after the patch I saw ERANGE issues as previously
reported by Carlos (see my commentary in
<https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>), which
needed addressing by ensuring excess range and precision were
eliminated at various points if FLT_EVAL_METHOD != 0.
I also noticed and fixed a cosmetic issue where 1.0f was used in long
double functions and should have been 1.0L.
This completes the move of all functions to testing in all rounding
modes with ALL_RM_TEST, so gen-libm-have-vector-test.sh is updated to
remove the workaround for some functions not using ALL_RM_TEST.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18613]
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Take log of
X_ADJ not X when adjusting exponent.
(__ieee754_gamma_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Take log
of X_ADJ not X when adjusting exponent.
(__ieee754_gammaf_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive): Take
log of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive): Take
log of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive): Take log
of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* math/libm-test.inc (tgamma_test_data): Remove one test. Moved
to auto-libm-test-in.
(tgamma_test): Use ALL_RM_TEST.
* math/auto-libm-test-in: Add one test of tgamma. Mark some other
tests of tgamma with spurious-overflow.
* math/auto-libm-test-out: Regenerated.
* math/gen-libm-have-vector-test.sh: Do not check for START.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Similar to various other bugs in this area, j1 and jn implementations
can fail to raise the underflow exception when the internal
computation is exact although the actual function is inexact. This
patch forces the exception in a similar way to other such fixes. (The
ldbl-128 / ldbl-128ibm j1l implementation is different and doesn't
need a change for this until spurious underflows in it are fixed.)
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16559]
* sysdeps/ieee754/dbl-64/e_j1.c: Include <float.h>.
(__ieee754_j1): Force underflow exception for small results.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Include <float.h>.
(__ieee754_j1f): Force underflow exception for small results.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c: Include <float.h>.
(__ieee754_j1l): Force underflow exception for small results.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Add more tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
Some existing jn tests, if run in non-default rounding modes, produce
errors above those accepted in glibc, which causes problems for moving
tests of jn to use ALL_RM_TEST. This patch makes jn set rounding
to-nearest internally, as was done for yn some time ago, then computes
the appropriate underflowing value for results that underflowed to
zero in to-nearest, and moves the tests to ALL_RM_TEST. It does
nothing about the general inaccuracy of Bessel function
implementations in glibc, though it should make jn more accurate on
average in non-default rounding modes through reduced error
accumulation. The recomputation of results that underflowed to zero
should as a side-effect fix some cases of bug 16559, where jn just
used an exact zero, but that is *not* the goal of this patch and other
cases of that bug remain unfixed.
(Most of the changes in the patch are reindentation to add new scopes
for SET_RESTORE_ROUND*.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16559]
[BZ #18602]
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Set
round-to-nearest internally then recompute results that
underflowed to zero in the original rounding mode.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise
* math/libm-test.inc (jn_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Similar to various other bugs in this area, some sin and sincos
implementations do not raise the underflow exception for subnormal
arguments, when the result is tiny and inexact. This patch forces the
exception in a similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16526]
[BZ #16538]
* sysdeps/ieee754/dbl-64/s_sin.c: Include <float.h>.
(__sin): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/k_sinf.c: Include <float.h>.
(__kernel_sinf): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/k_sincosl.c: Include <float.h>.
(__kernel_sincosl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/k_sincosl.c: Include <float.h>.
(__kernel_sincosl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-96/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/powerpc/fpu/k_sinf.c: Include <float.h>.
(__kernel_sinf): Force underflow exception for arguments with
small absolute value.
* math/auto-libm-test-in: Add more tests of sin and sincos.
* math/auto-libm-test-out: Regenerated.
The dbl-64 and flt-32 implementations of exp2 functions produce
spurious underflow exceptions. The underlying reason is the same in
both cases: the computation works as (2^a - 1)*2^b + 2^b for suitably
chosen a and b, where a has small magnitude so 2^a - 1 can be computed
with a low-degree polynomial approximation, and (2^a - 1)*2^b can
underflow even when the final result does not. This patch fixes this
by adjusting the threshold for when scaling is used to avoid
intermediate underflow so it works for any possible value of a where
the final result would not underflow.
Tested for x86_64 and x86.
[BZ #18219]
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Reduce
threshold on absolute value of exponent for which scaling is used.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Likewise.
* math/auto-libm-test-in: Add more tests of exp2.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some expm1 implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
(The issue does not apply to the ldbl-* implementations or to those
for x86 / x86_64 long double. The change to
sysdeps/ieee754/dbl-64/wordsize-64/e_cosh.c is one I missed when
previously fixing bug 16354; the bug in that implementation was
previously latent, but the expm1 fixes stopped it being latent and so
required it to be fixed to avoid spurious underflows from cosh.)
Tested for x86_64 and x86.
[BZ #16353]
* sysdeps/i386/fpu/s_expm1.S (dbl_min): New object.
(__expm1): Force underflow exception for arguments with small
absolute value.
* sysdeps/i386/fpu/s_expm1f.S (flt_min): New object.
(__expm1f): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/dbl-64/s_expm1.c: Include <float.h>.
(__expm1): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/s_expm1f.c: Include <float.h>.
(__expm1f): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/dbl-64/wordsize-64/e_cosh.c (__ieee754_cosh):
Check for small arguments before calling __expm1.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 16353.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some asinh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86 and mips64.
[BZ #16350]
* sysdeps/i386/fpu/s_asinh.S (__asinh): Force underflow exception
for arguments with small absolute value.
* sysdeps/i386/fpu/s_asinhf.S (__asinhf): Likewise.
* sysdeps/i386/fpu/s_asinhl.S (__asinhl): Likewise.
* sysdeps/ieee754/dbl-64/s_asinh.c: Include <float.h>.
(__asinh): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/s_asinhf.c: Include <float.h>.
(__asinhf): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128ibm/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-96/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 16350.
* math/auto-libm-test-out: Regenerated.
If you remove the "override CFLAGS += -Wno-uninitialized" in
math/Makefile, you get errors from lgamma implementations of the form:
../sysdeps/ieee754/dbl-64/e_lgamma_r.c: In function '__ieee754_lgamma_r':
../sysdeps/ieee754/dbl-64/e_lgamma_r.c:297:13: error: 'nadj' may be used uninitialized in this function [-Werror=maybe-uninitialized]
if(hx<0) r = nadj - r;
This is one of the standard kinds of false positive uninitialized
warnings: nadj is set under a certain condition, and then later used
under the same condition. This patch uses DIAG_* macros to suppress
the warning on the use of nadj. The ldbl-128 / ldbl-128ibm
implementation has a substantially different structure that avoids
this issue.
Tested for x86_64. (In fact this patch eliminates the need for that
-Wno-uninitialized on x86_64, but I want to test on more architectures
before removing it.)
* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Include <libc-internal.h>.
(__ieee754_lgamma_r): Ignore uninitialized warnings around use of
NADJ.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c: Include <libc-internal.h>.
(__ieee754_lgammaf_r): Ignore uninitialized warnings around use of
NADJ.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c: Include <libc-internal.h>.
(__ieee754_lgammal_r): Ignore uninitialized warnings around use of
NADJ.
Similar to various other bugs in this area, some atanh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes. (No change in this regard is needed
for the i386 implementation; special handling to force underflows in
these cases will only be needed there when the spurious underflows,
bug 18049, get fixed.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16352]
* sysdeps/i386/fpu/e_atanh.S (dbl_min): New object.
(__ieee754_atanh): Force underflow exception for results with
small absolute value.
* sysdeps/i386/fpu/e_atanhf.S (flt_min): New object.
(__ieee754_atanhf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/dbl-64/e_atanh.c: Include <float.h>.
(__ieee754_atanh): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/flt-32/e_atanhf.c: Include <float.h>.
(__ieee754_atanhf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-96/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* math/auto-libm-test-in: Do not allow missing underflow
exceptions from atanh.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of tanf produces spurious underflow
exceptions for some small arguments, through computing values on the
order of x^5. This patch fixes this by adjusting the threshold for
returning x (or, as applicable, +/- 1/x) to 2**-13 (the next term in
the power series being x^3/3).
Tested for x86_64 and x86.
[BZ #18221]
* sysdeps/ieee754/flt-32/k_tanf.c (__kernel_tanf): Use 2**-13 not
2**-28 as threshold for returning x or +/- 1/x.
* math/auto-libm-test-in: Add more tests of tan.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of lgammaf produces spurious underflow
exceptions for some large arguments, because of calculations involving
x^-2 multiplied by small constants. This patch fixes this by
adjusting the threshold for a simpler computation to 2**26 (the error
in the simpler computation is on the order of 0.5 * log (x), for a
result on the order of x * log (x)).
Tested for x86_64 and x86.
[BZ #18220]
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Use
2**26 not 2**58 as threshold for returning x * (log (x) - 1).
* math/auto-libm-test-in: Add another test of lgamma.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of erfcf produces spurious underflow
exceptions for some arguments close to 0, because of calculations
squaring the argument and then multiplying by small constants. This
patch fixes this by adjusting the threshold for arguments for which
the result is so close to 1 that 1 - x will give the right result from
2**-56 to 2**-26. (If 1 - x * 2/sqrt(pi) were used, the errors would be
on the order of x^3 and a much larger threshold could be used.)
Tested for x86_64 and x86.
[BZ #18217]
* sysdeps/ieee754/flt-32/s_erff.c (__erfcf): Use 2**-26 not 2**-56
as threshold for returning 1 - x.
* math/auto-libm-test-in: Add more tests of erfc.
* math/auto-libm-test-out: Regenerated.
The sysdeps/ieee754/flt-32 version of atanf produces spurious
underflow exceptions for some large arguments, because of computations
that compute x^-4. This patch fixes this by adjusting the threshold
for large arguments (for which +/- pi/2 can just be returned, the
correct result being roughly +/- pi/2 - 1/x) from 2^34 to 2^25.
Tested for x86_64 and x86.
[BZ #18196]
* sysdeps/ieee754/flt-32/s_atanf.c (__atanf): Use 2^25 not 2^34 as
threshold for large arguments.
* math/auto-libm-test-in: Add another test of atan.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some log1p implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes. (The ldbl-128ibm implementation
doesn't currently need any change as it already generates this
exception, albeit through code that would generate spurious exceptions
in other cases; special code for this issue will only be needed there
when fixing the spurious exceptions.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16339]
* sysdeps/i386/fpu/s_log1p.S (dbl_min): New object.
(__log1p): Force underflow exception for results with small
absolute value.
* sysdeps/i386/fpu/s_log1pf.S (flt_min): New object.
(__log1pf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/dbl-64/s_log1p.c: Include <float.h>.
(__log1p): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/flt-32/s_log1pf.c: Include <float.h>.
(__log1pf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_log1pl.c: Include <float.h>.
(__log1pl): Force underflow exception for results with small
absolute value.
* math/auto-libm-test-in: Do not allow missing underflow
exceptions from log1p.
* math/auto-libm-test-out: Regenerated.
According to bug 6792, errno is not set to ERANGE/EDOM
by calling log1p/log1pf/log1pl with x = -1 or x < -1.
This patch adds a wrapper which sets errno in those cases
and returns the value of the existing __log1p function.
The log1p is now an alias to the wrapper function
instead of __log1p.
The files in sysdeps are reflecting these changes.
The ia64 implementation sets errno by itself,
thus the wrapper-file is empty.
The libm-test is adjusted for log1p-tests to check errno.
[BZ #6792]
* math/w_log1p.c: New file.
* math/w_log1pf.c: Likewise.
* math/w_log1pl.c: Likewise.
* math/Makefile (libm-calls): Add w_log1p.
* math/s_log1pl.c (log1pl): Remove weak_alias.
* sysdeps/i386/fpu/s_log1p.S (log1p): Likewise.
* sysdeps/i386/fpu/s_log1pf.S (log1pf): Likewise.
* sysdeps/i386/fpu/s_log1pl.S (log1pl): Likewise.
* sysdeps/x86_64/fpu/s_log1pl.S (log1pl): Likewise.
* sysdeps/ieee754/dbl-64/s_log1p.c (log1p): Likewise.
[NO_LONG_DOUBLE] (log1pl): Likewise.
* sysdeps/ieee754/flt-32/s_log1pf.c (log1pf): Likewise.
* sysdeps/ieee754/ldbl-128/s_log1pl.c (log1pl): Likewise.
* sysdeps/ieee754/ldbl-64-128/s_log1pl.c
(log1p): Remove long_double_symbol.
* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (log1pl): Likewise.
* sysdeps/ieee754/ldbl-64-128/w_log1pl.c: New file.
* sysdeps/ieee754/ldbl-128ibm/w_log1pl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_log1p.c: Define empty weak_alias to
remove weak_alias for corresponding log1p function.
* sysdeps/m68k/m680x0/fpu/s_log1pf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_log1pl.c: Likewise.
* sysdeps/ia64/fpu/w_log1p.c: New file.
* sysdeps/ia64/fpu/w_log1pf.c: Likewise.
* sysdeps/ia64/fpu/w_log1pl.c: Likewise.
* math/libm-test.inc (log1p_test_data): Add errno expectations.