Commit Graph

3 Commits

Author SHA1 Message Date
Jason A. Donenfeld
eaad4f9e8f arc4random: simplify design for better safety
Rather than buffering 16 MiB of entropy in userspace (by way of
chacha20), simply call getrandom() every time.

This approach is doubtlessly slower, for now, but trying to prematurely
optimize arc4random appears to be leading toward all sorts of nasty
properties and gotchas. Instead, this patch takes a much more
conservative approach. The interface is added as a basic loop wrapper
around getrandom(), and then later, the kernel and libc together can
work together on optimizing that.

This prevents numerous issues in which userspace is unaware of when it
really must throw away its buffer, since we avoid buffering all
together. Future improvements may include userspace learning more from
the kernel about when to do that, which might make these sorts of
chacha20-based optimizations more possible. The current heuristic of 16
MiB is meaningless garbage that doesn't correspond to anything the
kernel might know about. So for now, let's just do something
conservative that we know is correct and won't lead to cryptographic
issues for users of this function.

This patch might be considered along the lines of, "optimization is the
root of all evil," in that the much more complex implementation it
replaces moves too fast without considering security implications,
whereas the incremental approach done here is a much safer way of going
about things. Once this lands, we can take our time in optimizing this
properly using new interplay between the kernel and userspace.

getrandom(0) is used, since that's the one that ensures the bytes
returned are cryptographically secure. But on systems without it, we
fallback to using /dev/urandom. This is unfortunate because it means
opening a file descriptor, but there's not much of a choice. Secondly,
as part of the fallback, in order to get more or less the same
properties of getrandom(0), we poll on /dev/random, and if the poll
succeeds at least once, then we assume the RNG is initialized. This is a
rough approximation, as the ancient "non-blocking pool" initialized
after the "blocking pool", not before, and it may not port back to all
ancient kernels, though it does to all kernels supported by glibc
(≥3.2), so generally it's the best approximation we can do.

The motivation for including arc4random, in the first place, is to have
source-level compatibility with existing code. That means this patch
doesn't attempt to litigate the interface itself. It does, however,
choose a conservative approach for implementing it.

Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Cristian Rodríguez <crrodriguez@opensuse.org>
Cc: Paul Eggert <eggert@cs.ucla.edu>
Cc: Mark Harris <mark.hsj@gmail.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>

Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2022-07-27 08:58:27 -03:00
Adhemerval Zanella Netto
b7060acfe8 powerpc64: Add optimized chacha20
It adds vectorized ChaCha20 implementation based on libgcrypt
cipher/chacha20-ppc.c.  It targets POWER8 and it is used on default
for LE.

On a POWER8 it shows the following improvements (using formatted
bench-arc4random data):

POWER8

GENERIC                                    MB/s
-----------------------------------------------
arc4random [single-thread]               138.77
arc4random_buf(16) [single-thread]       174.36
arc4random_buf(32) [single-thread]       228.11
arc4random_buf(48) [single-thread]       252.31
arc4random_buf(64) [single-thread]       270.11
arc4random_buf(80) [single-thread]       278.97
arc4random_buf(96) [single-thread]       287.78
arc4random_buf(112) [single-thread]      291.92
arc4random_buf(128) [single-thread]      295.25

POWER8                                     MB/s
-----------------------------------------------
arc4random [single-thread]               198.06
arc4random_buf(16) [single-thread]       278.79
arc4random_buf(32) [single-thread]       448.89
arc4random_buf(48) [single-thread]       551.09
arc4random_buf(64) [single-thread]       646.12
arc4random_buf(80) [single-thread]       698.04
arc4random_buf(96) [single-thread]       756.06
arc4random_buf(112) [single-thread]      784.12
arc4random_buf(128) [single-thread]      808.04
-----------------------------------------------

Checked on powerpc64-linux-gnu and powerpc64le-linux-gnu.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
2022-07-22 11:58:27 -03:00
Gabriel F. T. Gomes
3a33b06969 powerpc64*: fix the order of implied sysdeps directories
The creation of the divergent sysdeps directory for powerpc64le

commit 2f7f3cd8cd
Author: Paul E. Murphy <murphyp@linux.vnet.ibm.com>
Date:   Fri Jul 15 18:04:40 2016 -0500

    powerpc64le: Create divergent sysdep directory for powerpc64le.

allowed float128 to be enabled for powerpc64le (little-endian) and not
for powerpc64 (big-endian).  Since the only intended difference between
them was the presence or absence of the float128 interface, the sysdeps
directory for powerpc64le explicitly reused the files from powerpc64
(through the use of Implies files).

Although this works, it also means that files under the powerpc64
directory might be preferred over files under powerpc64le.  For
instance, on a build for powerpc64le with target set to power9, a file
from powerpc64/power5 might get built, even though a file with the same
name exists in powerpc64le/power8.  That happens because the processor
hierarchy was only defined in the sysdeps directory for powerpc64 (and
borrowed by powerpc64le).

This patch fixes this behavior, by creating new subdirectories under
powerpc64 (i.e.: powerpc64/be and powerpc64/le) and creating new Implies
files to provide the hierarchy of processors for powerpc64 and
powerpc64le separately.  These changes have no effect on installed,
stripped binaries (which remain unchanged).

Tested that installed stripped binaries are unchanged and that there are
no regressions on powerpc64 and powerpc64le.
2018-04-27 16:32:01 -03:00