The symbol was moved using scripts/move-symbol-to-libc.py.
To introduce the proper symbol versioning, the implementation of
the system call wrapper us moved to a C file.
Reviewed-by: Adhemerva Zanella <adhemerval.zanella@linaro.org>
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for clock_adjtime with one which adds
extra support for reading 64 bit time values on machines with __TIMESIZE != 64.
To achieve this goal new __clock_adjtime64 explicit 64 bit function for
adjusting Linux clock has been added.
Moreover, a 32 bit version - __clock_adjtime has been refactored to internally
use __clock_adjtime64.
The __clock_adjtime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversions between 64 bit
struct __timespec64 and struct timespec.
The new __clock_adjtime64 syscall available from Linux 5.1+ has been used, when
applicable.
Up till v5.4 in the Linux kernel there was a bug preventing this call from
obtaining correct struct's timex time.tv_sec time after time_t overflow
(i.e. not being Y2038 safe).
Build tests:
- ./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Linux kernel, headers and minimal kernel version for glibc build test matrix:
- Linux v5.1 (with clock_adjtime64) and glibc build with v5.1 as
minimal kernel version (--enable-kernel="5.1.0")
The __ASSUME_TIME64_SYSCALLS flag defined.
- Linux v5.1 and default minimal kernel version
The __ASSUME_TIME64_SYSCALLS not defined, but kernel supports clock_adjtime64
syscall.
- Linux v4.19 (no clock_adjtime64 support) with default minimal kernel version
for contemporary glibc (3.2.0)
This kernel doesn't support clock_adjtime64 syscall, so the fallback to
clock_adjtime is tested.
Above tests were performed with Y2038 redirection applied as well as without
(so the __TIMESIZE != 64 execution path is checked as well).
No regressions were observed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add a C wrapper to pass arguments in
/* Control process execution. */
extern int prctl (int __option, ...) __THROW;
to prctl syscall:
extern int prctl (int, unsigned long int, unsigned long int,
unsigned long int, unsigned long int);
Since the the U marker can only be applied to 2 unsigned long arguments
in syscalls.list files, add a C wrapper for process_vm_readv and
process_vm_writev syscals which have more than 2 unsigned long arguments.
Mark unsigned long arguments in mmap, read, recv, recvfrom, send, sendto,
write, ioperm, sendfile64, setxattr, lsetxattr, fsetxattr, getxattr,
lgetxattr, fgetxattr, listxattr, llistxattr and flistxattr with U in
syscalls.list files.
X32 has 32-bit long and pointer with 64-bit off_t. Since x32 psABI
requires that pointers passed in registers must be zero-extended to
64bit, x32 can share many syscall interfaces with LP64. When a LP64
syscall with long and unsigned long int arguments is used for x32, these
arguments must be properly extended to 64-bit. Otherwise if the upper
32 bits of the register have undefined value, such a syscall will be
rejected by kernel.
For syscalls implemented in assembly codes, 'U' is added to syscall
signature key letters for unsigned long, which is zero-extended to
64-bit types. SYSCALL_ULONG_ARG_1 and SYSCALL_ULONG_ARG_2 are passed
to syscall-template.S for the first and the second unsigned long int
arguments if PSEUDOS_HAVE_ULONG_INDICES is defined. They are used by
x32 to zero-extend 32-bit arguments to 64 bits.
Tested on i386, x86-64 and x32 as well as with build-many-glibcs.py.
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for utime with one which adds extra
support for setting file's access and modification 64 bit time on machines
with __TIMESIZE != 64.
Internally, the __utimensat_time64 helper function is used. This patch is
necessary for having architectures with __WORDSIZE == 32 && __TIMESIZE != 64
Y2038 safe.
Moreover, a 32 bit version - __utime has been refactored to internally use
__utime64.
The __utime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion between struct
utimbuf and struct __utimbuf64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as
without to test proper usage of both __utime64 and __utime.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for sched_rr_get_interval with one which
adds extra support for reading 64 bit time values on machines with
__TIMESIZE != 64.
There is no functional change for architectures already supporting 64 bit
time ABI.
The sched_rr_get_interval declaration in ./include/sched.h is not followed by
corresponding libc_hidden_proto(), so it has been assumed that newly introduced
syscall wrapper doesn't require libc_hidden_def() (which has been added by
template used with auto generation script).
Moreover, the code for building sched_rr_gi.c file is already placed in
./posix/Makefiles, so there was no need to add it elsewhere.
Performed tests and validation are the same as for timer_gettime() conversion
(sysdeps/unix/sysv/linux/timer_gettime.c).
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for timerfd_settime with one which
adds extra support for reading and writing from Linux kernel 64 bit time
values on machines with __TIMESIZE != 64.
There is no functional change for archs already supporting 64 bit time ABI.
This patch is conceptually identical to timer_settime conversion already
done in sysdeps/unix/sysv/linux/timer_settime.c.
Please refer to corresponding commit message for detailed description of
introduced functions and the testing procedure.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
---
Changes for v4:
- Update date from 2019 to 2020
Changes for v3:
- Add missing libc_hidden_def()
Changes for v2:
- Remove "Contributed by" from the file header
- Remove early check for (fd < 0) in __timerfd_settime64 as the fd
correctness check is already done in Linux kernel
- Add single descriptive comment line to provide concise explanation
of the code
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for timerfd_gettime with one which
adds extra support for reading 64 bit time values on machines with
__TIMESIZE != 64.
There is no functional change for architectures already supporting 64 bit
time ABI.
This patch is conceptually identical to timer_gettime conversion already
done in sysdeps/unix/sysv/linux/timer_gettime.c.
Please refer to corresponding commit message for detailed description of
introduced functions and the testing procedure.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
---
Changes for v4:
- Update date from 2019 to 2020
Changes for v3:
- Add missing libc_hidden_def()
Changes for v2:
- Remove "Contributed by" from the file header
- Remove early check for (fd < 0) in __timerfd_gettime64 as the fd
correctness check is already done in Linux kernel
- Add single descriptive comment line to provide concise explanation
of the code
If the wait4 syscall is not available (such as y2038 safe 32-bit
systems) waitid should be used instead. However prior Linux 5.4
waitid is not a full superset of other wait syscalls, since it
does not include support for waiting for the current process group.
It is possible to emulate wait4 by issuing an extra syscall to get
the current process group, but it is inherent racy: after the current
process group is received and before it is passed to waitid a signal
could arrive causing the current process group to change.
So waitid is used if wait4 is not defined iff the build is
enabled with a minimum kernel if 5.4+. The new assume
__ASSUME_WAITID_PID0_P_PGID is added and an error is issued if waitid
can not be implemented by either __NR_wait4 or
__NR_waitid && __ASSUME_WAITID_PID0_P_PGID.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Co-authored-by: Alistair Francis <alistair.francis@wdc.com>
Unconditionally, on all ports, use clock_settime to implement stime,
not settimeofday or a direct syscall. Then convert stime into a
compatibility symbol and remove its prototype from time.h.
Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc64le-linux-gnu,
powerpc64-linux-gnu, powerpc-linux-gnu, and aarch64-linux-gnu.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Linux/Alpha has two versions of several system call wrappers that take
or return data of type "struct timeval" (possibly nested inside a
larger structure). The GLIBC_2.0 version is a compat symbol that
calls __NR_osf_foo or __NR_old_foo and uses a struct timeval with a
32-bit tv_sec field. The GLIBC_2.1 version is used for current code,
calls __NR_foo, and uses a struct timeval with a 64-bit tv_sec field.
This patch changes all of the compat symbols of this type to be
wrappers around their GLIBC_2.1 counterparts; the compatibility system
calls will no longer be used. It serves as a proposal for part of how
we do the transition to 64-bit time_t on systems that currently use
32-bit time_t:
* The patched glibc will NOT use system calls that involve 32-bit
time_t to implement its compatibility symbols. This will make both
our lives and the kernel maintainers' lives easier. The primary
argument I've seen against it is that the kernel could warn about
uses of the old system calls, helping people find old binaries that
need to be recompiled. I think there are several other ways we
could accomplish this, e.g. scripts to scan the filesystem for
binaries with references to the old symbol versions, or issuing
diagnostics ourselves.
* The compat symbols do NOT report failure after the Y2038 deadline.
An earlier revision of this patch had them return -1 and set errno
to EOVERFLOW, but Adhemerval pointed out that many of them have
already performed side effects at the point where we discover the
overflow, so that would break more than it fixes. Also, we don't
want people to be _checking_ for EOVERFLOW from these functions; we
want them to recompile with 64-bit time_t. So it's not actually
useful for them to report failure to the calling code.
* What they do do, when they encounter overflow, is saturate the
overflowed "struct timeval"(s): tv_sec is set to INT32_MAX and
tv_nsec is set to 999999. That means time stops advancing for
programs with 32-bit time_t when they reach the deadline. That's
obviously going to break stuff, but I think wrapping around is
probably going to break _more_ stuff. I'd be interested to hear
arguments against, if anyone has one.
The new header file tv32-compat.h is currently Alpha-specific but I
mean for it to be reused to aid in writing wrappers for all affected
architectures. I only put it in sysdeps/unix/sysv/linux/alpha for now
because I haven't checked whether the various "foo32" structures it
defines agree with the ABI for ports other than Linux/Alpha.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The tgkill function is sometimes used in crash handlers.
<bits/signal_ext.h> follows the same approach as <bits/unistd_ext.h>
(which was added for the gettid system call wrapper).
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The stub implementations are turned into compat symbols.
Linux actually has two reserved system call numbers (for getpmsg
and putpmsg), but these system calls have never been implemented,
and there are no plans to implement them, so this patch replaces
the wrappers with the generic stubs.
According to <https://bugzilla.redhat.com/show_bug.cgi?id=436349>,
the presence of the XSI STREAMS declarations is a minor portability
hazard because they are not actually implemented.
This commit does not change the TIRPC support code in
sunrpc/rpc_svcout.c. It uses additional XTI functionality and
therefore never worked with glibc.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This commit adds gettid to <unistd.h> on Linux, and not to the
kernel-independent GNU API.
gettid is now supportable on Linux because too many things assume a
1:1 mapping between libpthread threads and kernel threads.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The Linux nfsservctl syscall was removed in Linux 3.1. Since the
minimum kernel version for use with glibc is 3.2, the glibc wrapper
for this syscall can no longer usefully be called. This patch makes
it into a compat symbol, not provided at all for static linking or new
ports. (It was already the case that there was no header declaration
of this function.)
Tested for x86_64.
* sysdeps/unix/sysv/linux/syscalls.list (nfsservctl): Make into a
compat symbol, disabled for minimum symbol version GLIBC_2.28 and
later.
This adds system call wrappers for pkey_alloc, pkey_free, pkey_mprotect,
and x86-64 implementations of pkey_get and pkey_set, which abstract over
the PKRU CPU register and hide the actual number of memory protection
keys supported by the CPU. pkey_mprotect with a -1 key is implemented
using mprotect, so it will work even if the kernel does not support the
pkey_mprotect system call.
The system call wrapers use unsigned int instead of unsigned long for
parameters, so that no special treatment for x32 is needed. The flags
argument is currently unused, and the access rights bit mask is limited
to two bits by the current PKRU register layout anyway.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The system call is somewhat obscure because it is closely related
to file descriptor sealing. However, it is also the recommended
way to create alias mappings, which is why it has more general use.
No emulation is provided. Except for the name of the
/proc/self/fd links, it would be possible to implement an
approximation using O_TMPFILE and tmpfs, but this does not appear
to be worth the added complexity.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
This patch consolidates the mq_timedsend Linux syscall generation
on sysdeps/unix/sysv/linux/mq_timedsend.c. It basically removes it
from architecture auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* rt/Makefile (CFLAGS-mq_timedsend.c): New flag.
* sysdeps/unix/sysv/linux/mq_timedsend.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list (mq_timedsend): Remove from
auto-generation list.
This patch consolidates the mq_timedreceive Linux syscall generation
on sysdeps/unix/sysv/linux/mq_timedreceive.c. It basically removes it
from architecture auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* rt/Makefile (CFLAGS-mq_timedreceive.c): New flag.
* sysdeps/unix/sysv/linux/mq_timedreceive.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list (mq_timedreceive): Remove
from auto-generation list.
This patch consolidates the open_by_handle_at Linux syscall generation on
sysdeps/unix/sysv/linux/open_by_handle_at.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_routines): Add
open_by_handle_at.
(CFLAGS-open_by_handle_at.c): New flag.
* sysdeps/unix/sysv/linux/open_by_handle_at.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list (open_by_handle_at): New
file.
* misc/Makefile (CFLAGS-open_by_handle_at.c): New rule.
This patch consolidates the splice Linux syscall generation on
sysdeps/unix/sysv/linux/splice.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_routines): Add splice.
(CFLAGS-splice.c): New flag.
* sysdeps/unix/sysv/linux/splice.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list (splice): Remove from
auto-generation syscall list.
* misc/Makefile (CFLAGS-splice.c): New rule.
This patch consolidates the vmsplice Linux syscall generation on
sysdeps/unix/sysv/linux/vmsplice.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (CFLAGS-vmsplice.c): New flag.
* sysdeps/unix/sysv/linux/syscalls.list (vmsplice): Remove from
auto-generation syscall list.
* sysdeps/unix/sysv/linux/vmsplice.c: New file.
* misc/Makefile (CFLAGS-vmsplice.c): New rule.
This patch consolidates the fdatasync Linux syscall generation on
sysdeps/unix/sysv/linux/fdatasync.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* misc/makefile (CFLAGS-datasync.c): New flag.
* nptl/makefile (CFLAGS-datasync.c): Likewise.
* sysdeps/unix/sysv/linux/syscalls.list (fdatasync): Remove from
auto-generation syscall list.
* sysdeps/unix/sysv/linux/fdatasync.c: New file.
This patch consolidates the tee Linux syscall generation on
sysdeps/unix/sysv/linux/tee.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdeps_routines): Add tee.
(CFLAGS-tee.c): New rule.
* sysdeps/unix/sysv/linux/syscalls.list: Remove tee from
auto-generated list.
* sysdeps/unix/sysv/linux/tee.c: New file.
This patch consolidates the nanosleep Linux syscall generation on
sysdeps/unix/sysv/linux/nanosleep.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* nptl/Makefile (CFLAGS-nanosleep.c): New rule.
* posix/Makefile (CFLAGS-nanosleep.c): Likewise.
* sysdeps/unix/sysv/linux/nanosleep.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list: Remove nanosleep from
auto-generated list.
This patch consolidates the pause Linux implementation on
sysdeps/unix/sysv/linux/pause.c. If defined the pause syscall
(__NR_pause) will be used, other ppoll with 0 arguments will be
used instead.
It has the small advantage of generic pause implementation with
uses rt_sigprocmask plus rt_sigsuspend because it requires only
one syscall and the pause is done atomically regarding signal
handling (for instance, pause may not be interrupted if the
signal arrives between the rt_sigprocmask and rt_sigsuspend
syscall).
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/generic/pause.c: Remove file.
* sysdeps/unix/sysv/linux/sparc/sparc64/pause.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel-features.h [__arch64__]
(__NR_pause): Undefine.
* sysdeps/unix/sysv/linux/pause.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list: Remove pause from
auto-generation list.
This patch consolidates the creat Linux syscall implementation on
sysdeps/unix/sysv/linux/creat{64}.c. The changes are:
1. Remove creat{64} from auto-generation syscalls.list.
2. Add a new creat{64}.c implementation. For architectures that
define __OFF_T_MATCHES_OFF64_T the default creat64 will create
alias to required creat symbols.
3. Use __NR_creat where possible, otherwise use internal open{64}
call with expected flags.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, and powerpc64le-linux-gnu.
* io/Makefile (CFLAGS-creat.c): New rule.
(CFLAGS-creat64.c): Likewise.
* sysdeps/unix/sysv/linux/alpha/creat.c: Remove file.
* sysdeps/unix/sysv/linux/generic/creat.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/creat64.c: Likewise.
* sysdeps/unix/sysv/linux/creat.c: New file.
* sysdeps/unix/sysv/linux/creat64.c: Likewise.
* sysdeps/unix/sysv/linux/syscalls.list: Remove create from
auto-generated list.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list: Likewise.
This patch consolidates the epoll_wait Linux syscall generation on
sysdeps/unix/sysv/linux/epoll_wait.c. The implementation tries to
use __NR_epoll_wait if defined, otherwise calls epoll_pwait.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, and powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/epoll_wait.c: New file.
* sysdeps/unix/sysv/linux/generic/epoll_wait.c: Remove file.
* sysdeps/unix/sysv/linux/syscalls.list: Remove epoll_wait from
auto-generation list.
This patch consolidates the select Linux syscall implementation on
sysdeps/unix/sysv/linux/select.c. The changes are:
1. Remove select from auto-generation syscalls.list on the architecture
that uses __NR_select.
2. Remove generic implementation add a default one that handle all
current cases (with the expection of alpha)
The new default implementation will either use __NR_select if
available of fallback to __NR_pselect6 otherwise.
3. Add a alpha outlier implementation which requires old compatibility
symbols.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, and powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/Makefile (sysdep_routines): Add
osf_select.
* sysdeps/unix/sysv/linux/alpha/select.c: New file.
* sysdeps/unix/sysv/linux/alpha/syscalls.list: Remove select and
osf_select from auto-generation list.
* sysdeps/unix/sysv/linux/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/generic/select.c: Remove file.
* sysdeps/unix/sysv/linux/select.c: New file.
This patch consolidates the poll Linux syscall implementation on
sysdeps/unix/sysv/linux/poll.c. It basically removes poll from
auto-generation list and add a default implementation that either
call __NR_poll directly (if the kernel headers defines it) or
ppoll adjusting the timeout argument (as the generic implementation).
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
aarch64-linux-gnu, arm-linux-gnueabihf, and powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/generic/poll.c: Remove file.
* sysdeps/unix/sysv/linux/poll.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list: Remove poll from
auto-generation list.
This patch consolidates the Linux renameat implementation on
sysdeps/unix/sysv/linux/renameat.c. The renameat syscall was
deprecated at b0da6d44 for newer architectures, so using the
auto-generation list may generate wrappers that returns ENOSYS.
Current code try to use __NR_renameat and if it is not define
it uses __NR_renameat2.
Checked on x86_64 and aarch64.
* sysdeps/unix/sysv/linux/renameat.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list: Remove renameat.
This patch remove the PID cache and usage in current GLIBC code. Current
usage is mainly used a performance optimization to avoid the syscall,
however it adds some issues:
- The exposed clone syscall will try to set pid/tid to make the new
thread somewhat compatible with current GLIBC assumptions. This cause
a set of issue with new workloads and usecases (such as BZ#17214 and
[1]) as well for new internal usage of clone to optimize other algorithms
(such as clone plus CLONE_VM for posix_spawn, BZ#19957).
- The caching complexity also added some bugs in the past [2] [3] and
requires more effort of each port to handle such requirements (for
both clone and vfork implementation).
- Caching performance gain in mainly on getpid and some specific
code paths. The getpid performance leverage is questionable [4],
either by the idea of getpid being a hotspot as for the getpid
implementation itself (if it is indeed a justifiable hotspot a
vDSO symbol could let to a much more simpler solution).
Other usage is mainly for non usual code paths, such as pthread
cancellation signal and handling.
For thread creation (on stack allocation) the code simplification in fact
adds some performance gain due the no need of transverse the stack cache
and invalidate each element pid.
Other thread usages will require a direct getpid syscall, such as
cancellation/setxid signal, thread cancellation, thread fail path (at
create_thread), and thread signal (pthread_kill and pthread_sigqueue).
However these are hardly usual hotspots and I think adding a syscall is
justifiable.
It also simplifies both the clone and vfork arch-specific implementation.
And by review each fork implementation there are some discrepancies that
this patch also solves:
- microblaze clone/vfork does not set/reset the pid/tid field
- hppa uses the default vfork implementation that fallback to fork.
Since vfork is deprecated I do not think we should bother with it.
The patch also removes the TID caching in clone. My understanding for
such semantic is try provide some pthread usage after a user program
issue clone directly (as done by thread creation with CLONE_PARENT_SETTID
and pthread tid member). However, as stated before in multiple discussions
threads, GLIBC provides clone syscalls without further supporting all this
semantics.
I ran a full make check on x86_64, x32, i686, armhf, aarch64, and powerpc64le.
For sparc32, sparc64, and mips I ran the basic fork and vfork tests from
posix/ folder (on a qemu system). So it would require further testing
on alpha, hppa, ia64, m68k, nios2, s390, sh, and tile (I excluded microblaze
because it is already implementing the patch semantic regarding clone/vfork).
[1] https://codereview.chromium.org/800183004/
[2] https://sourceware.org/ml/libc-alpha/2006-07/msg00123.html
[3] https://sourceware.org/bugzilla/show_bug.cgi?id=15368
[4] http://yarchive.net/comp/linux/getpid_caching.html
* sysdeps/nptl/fork.c (__libc_fork): Remove pid cache setting.
* nptl/allocatestack.c (allocate_stack): Likewise.
(__reclaim_stacks): Likewise.
(setxid_signal_thread): Obtain pid through syscall.
* nptl/nptl-init.c (sigcancel_handler): Likewise.
(sighandle_setxid): Likewise.
* nptl/pthread_cancel.c (pthread_cancel): Likewise.
* sysdeps/unix/sysv/linux/pthread_kill.c (__pthread_kill): Likewise.
* sysdeps/unix/sysv/linux/pthread_sigqueue.c (pthread_sigqueue):
Likewise.
* sysdeps/unix/sysv/linux/createthread.c (create_thread): Likewise.
* sysdeps/unix/sysv/linux/getpid.c: Remove file.
* nptl/descr.h (struct pthread): Change comment about pid value.
* nptl/pthread_getattr_np.c (pthread_getattr_np): Remove thread
pid assert.
* sysdeps/unix/sysv/linux/pthread-pids.h (__pthread_initialize_pids):
Do not set pid value.
* nptl_db/td_ta_thr_iter.c (iterate_thread_list): Remove thread
pid cache check.
* nptl_db/td_thr_validate.c (td_thr_validate): Likewise.
* sysdeps/aarch64/nptl/tcb-offsets.sym: Remove pid offset.
* sysdeps/alpha/nptl/tcb-offsets.sym: Likewise.
* sysdeps/arm/nptl/tcb-offsets.sym: Likewise.
* sysdeps/hppa/nptl/tcb-offsets.sym: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym: Likewise.
* sysdeps/ia64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/m68k/nptl/tcb-offsets.sym: Likewise.
* sysdeps/microblaze/nptl/tcb-offsets.sym: Likewise.
* sysdeps/mips/nptl/tcb-offsets.sym: Likewise.
* sysdeps/nios2/nptl/tcb-offsets.sym: Likewise.
* sysdeps/powerpc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/s390/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sh/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sparc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/tile/nptl/tcb-offsets.sym: Likewise.
* sysdeps/x86_64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/unix/sysv/linux/aarch64/clone.S: Remove pid and tid caching.
* sysdeps/unix/sysv/linux/alpha/clone.S: Likewise.
* sysdeps/unix/sysv/linux/arm/clone.S: Likewise.
* sysdeps/unix/sysv/linux/hppa/clone.S: Likewise.
* sysdeps/unix/sysv/linux/i386/clone.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/clone2.S: Likewise.
* sysdeps/unix/sysv/linux/mips/clone.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sh/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/tile/clone.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/aarch64/vfork.S: Remove pid set and reset.
* sysdeps/unix/sysv/linux/alpha/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/arm/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/i386/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/clone.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/mips/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sh/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tile/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tst-clone2.c (f): Remove direct pthread
struct access.
(clone_test): Remove function.
(do_test): Rewrite to take in consideration pid is not cached anymore.
This patch consolidates all Linux setrlimit and getrlimit on the default
sysdeps/unix/sysv/linux/{set,get}rlimit{64}.c. It contains two exceptions:
1. mips32 and mips64n32 which requires a versioned symbol for GLIBC 2.19
and higher due a broken RLIM64_INFINITY constant.
2. sparc32 does not define a compat symbol for getrlimit64 for old 2GB
limit. I am not sure if it is required, but a RLIM_INFINITY fix [1]
change its definition without adding a compat symbol. This patch does
not aim to address this possible issue, it follow current symbol
export.
The default implementation uses prlimit64 for 64 bit rlim_t ({set,get}rlimit64)
and if it fails with ENOSYS it fall back to {get,set}rlimit syscall. This
code path is only used on kernel older than 2.6.36 (basically now only x86)
and I avoid to user __ASSUME_PRLIMTI64 to simplify the implementation. Once
x86 moves to be on par with other architectures regarding minimum kernel
supported we can get rid of using old syscalls and default path.
A new type size define is added, __RLIM_T_MATCHES_RLIM64_T, where is set as
default for 64 bits ports. This allows the default implementation to avoid
{get,set}rlimit building and alias {get,set}rlimit64 to {get,set}rlimit.
Checked on x86_64, i386, armhf, aarch64, and powerpc64le. I also did a
sanity build plus check-abi on all other supported architectures.
[1] Commit 9c96ff2385
Adhemerval Zanella <adhemerval.zanella@linaro.org>
Yury Norov <ynorov@caviumnetworks.com>
* bits/typesizes.h (__RLIM_T_MATCHES_RLIM64_T): define.
* sysdeps/unix/sysv/linux/alpha/bits/typesizes.h
(__RLIM_T_MATCHES_RLIM64_T): Likewise.
* sysdeps/unix/sysv/linux/generic/bits/typesizes.h
(__RLIM_T_MATCHES_RLIM64_T): Likewise.
* sysdeps/unix/sysv/linux/s390/bits/typesizes.h [__s390x__]
(__RLIM_T_MATCHES_RLIM64_T): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/typesizes.h
[__arch64__ || __sparcv9] (__RLIM_T_MATCHES_RLIM64_T): Likewise.
* sysdeps/unix/sysv/linux/x86/bits/typesizes.h [__86_64__]
(__RLIM_T_MATCHES_RLIM64_T): Likewise.
* sysdeps/unix/sysv/linux/arm/Makefile [$(subdir) = resource]
(sysdep_routines): Remove oldgetrlimit64.
* sysdeps/unix/sysv/linux/i386/Makefile [$(subdir) = resource]
(sysdep_routines): Likewise.
* sysdeps/unix/sysv/linux/m68k/Makefile [$(subdir) = resource]
(sysdep_routines): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/Makefile
[$(subdir) = resource] (sysdep_routines): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/Makefile
[$(subdir) = resource] (sysdep_routines): Likewise.
* sysdeps/unix/sysv/linux/arm/getrlimit64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/oldgetrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/hppa/getrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/getrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/oldgetrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/getrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/oldgetrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/getrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/oldgetrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/getrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/oldgetrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/sh/getrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/setrlimit64.c: Likewise.
* sysdeps/sysv/linux/generic/wordsize-32/syscalls.list: Remove
setrlimit and getrlimit.
* sysdeps/unix/sysv/linux/hppa/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/i386/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/getrlimit.c: New file.
* sysdeps/unix/sysv/linux/sparc/getrlimit64.c: Likewise.
* sysdeps/unix/sysv/linux/setrlimit.c: Likewise.
* sysdeps/unix/sysv/linux/getrlimit64.c (__getrlimit64): Handle
__RLIM_T_MATCHES_RLIM64_T and add alias if defined.
(__old_getrlimit64): Add compatibility symbol.
* sysdeps/unix/sysv/linux/setrlimit64.c (__setrlimit): Likewise.
Given current Linux kernel version requirements, we can assume the
presence of the eventfd2 syscall. This means that __ASSUME_EVENTFD2
can be removed, and a syscalls.list entry suffices for eventfd instead
of needing a .c file. This patch implements those changes.
Tested for x86_64 and x86 (not that that means much, given the lack of
testsuite coverage for eventfd).
* sysdeps/unix/sysv/linux/kernel-features.h (__ASSUME_EVENTFD2):
Remove macro.
* sysdeps/unix/sysv/linux/eventfd.c: Remove file.
* sysdeps/unix/sysv/linux/syscalls.list (eventfd): New syscall
entry.
The personality system call, starting with linux kernel commit
v2.6.29-6609-g11d06b2a1e5658f448a308aa3beb97bacd64a940, always
successfully changes the personality if requested. The syscall
wrapper, however, still can return an error in the following cases:
- the value returned by the system call looks like an error
due to architecture limitations of 32-bit kernels;
- a personality greater than 0xffffffff is passed to the system call,
and the 64-bit kernel does not have commit
v2.6.35-rc1-372-g485d527686850d68a0e9006dd9904f19f122485e
that would truncate this value to unsigned int;
- on sparc64, the value returned by the system call looks like an error
due to sparc64 kernel sign extension bug.
The solution is three-fold:
- move generic syscalls.list personality entry to generic 64-bit
syscalls.list file;
- for each 32-bit architecture that use negated errno semantics,
add a NOERRNO personality entry to their syscalls.list file;
- for sparc64 and 32-bit architectures that use dedicated registers
to flag syscall errors, add a wrapper around personality syscall;
if the system call return value is flagged as an error, this wrapper
returns the negated "would be errno" value, otherwise it returns
the system call return value; on sparc64, it also truncates the
personality argument to unsigned int before passing it to the kernel.
[BZ #19408]
* sysdeps/unix/sysv/linux/personality.c: New file.
* sysdeps/unix/sysv/linux/sparc/sparc64/personality.c: Likewise.
* sysdeps/unix/sysv/linux/tst-personality.c: Likewise.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) == misc]
(sysdep_routines): Add personality.
(tests): Add tst-personality.
* sysdeps/unix/sysv/linux/syscalls.list (personality): Move ...
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list: ... here.
* sysdeps/unix/sysv/linux/arm/syscalls.list (personality): New entry.
* sysdeps/unix/sysv/linux/hppa/syscalls.list (personality): Likewise.
* sysdeps/unix/sysv/linux/i386/syscalls.list (personality): Likewise.
* sysdeps/unix/sysv/linux/m68k/syscalls.list (personality): Likewise.
* sysdeps/unix/sysv/linux/microblaze/syscalls.list (personality):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/syscalls.list (personality):
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/syscalls.list (personality):
Likewise.
* sysdeps/unix/sysv/linux/sh/syscalls.list (personality): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/syscalls.list (personality):
Likewise.
Various Linux kernel syscalls have become obsolete over time.
Specifically, the following are obsolete in all kernel versions
supported by glibc, are not present for architectures more recently
added to the kernel, and as such, the wrapper functions for them
should be compat symbols, not in static libc and not available for new
links with shared libc.
* bdflush: in Linux 2.6, does nothing if present.
* create_module get_kernel_syms query_module: Linux 2.4 module
interface, syscalls not present in Linux 2.6.
* uselib: part of the mechanism for loading a.out shared libraries,
irrelevant with ELF.
This patch adds support for syscalls.list to list syscall aliases of
the form NAME@VERSION:OBSOLETED, with SHLIB_COMPAT conditionals being
generated for such aliases. Those five syscalls are then made into
compat symbols (obsoleted in glibc 2.23, so future ports won't have
these symbols at all), with the header <sys/kdaemon.h> declaring
bdflush being removed. When we move to 3.2 as minimum kernel version,
the same can be done for nfsservctl (removed in Linux 3.1) as well.
Tested for x86_64 and x86 (testsuite, as well as checking that the
symbols in question indeed become compat symbols, that they are indeed
omitted from static libc, and that the generated SHLIB_COMPAT
conditionals look right).
[BZ #18472]
* sysdeps/unix/Makefile ($(objpfx)stub-syscalls.c): Handle entries
for the form NAME@VERSION:OBSOLETED and generate SHLIB_COMPAT
conditionals for them.
* sysdeps/unix/make-syscalls.sh (emit_weak_aliases): Likewise.
* sysdeps/unix/sysv/linux/sys/kdaemon.h: Remove file.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Remove
sys/kdaemon.h.
* sysdeps/unix/sysv/linux/syscalls.list (bdflush): Make into
compat-only syscall, obsoleted in glibc 2.23.
(create_module): Likewise.
(get_kernel_syms): Likewise.
(query_module): Likewise.
(uselib): Likewise.
* manual/sysinfo.texi (System Parameters): Do not mention bdflush.
Profiling git's test suite, Linus noted [1] that a disproportionately
large amount of time was spent reading /proc/meminfo. This is done by
the glibc functions get_phys_pages and get_avphys_pages, but they only
need the MemTotal and MemFree fields, respectively. That same
information can be obtained with a single syscall, sysinfo, instead of
six: open, fstat, mmap, read, close, munmap. While sysinfo also
provides more than necessary, it does a lot less work than what the
kernel needs to do to provide the entire /proc/meminfo. Both strace -T
and in-app microbenchmarks shows that the sysinfo() approach is
roughly an order of magnitude faster.
sysinfo() is much older than what glibc currently requires, so I don't
think there's any reason to keep the old parsing code. Moreover, this
makes get_[av]phys_pages work even in the absence of /proc.
Linus noted that something as simple as 'bash -c "echo"' would trigger
the reading of /proc/meminfo, but gdb says that many more applications
than just bash are affected:
Starting program: /bin/bash "-c" "echo"
Breakpoint 1, __get_phys_pages () at ../sysdeps/unix/sysv/linux/getsysstats.c:283
283 ../sysdeps/unix/sysv/linux/getsysstats.c: No such file or directory.
(gdb) bt
So it seems that any application that uses qsort on a moderately sized
array will incur this cost (once), which is obviously proportionately
more expensive for lots of short-lived processes (such as the git test
suite).
[1] http://thread.gmane.org/gmane.linux.kernel/2019285
Signed-off-by: Rasmus Villemoes <rv@rasmusvillemoes.dk>
* sysdeps/unix/sysv/linux/getsysstats.c (__get_phys_pages):
Use sysinfo system call instead of parsing /proc/meminfo.
* sysdeps/unix/sysv/linux/getsysstats.c (__get_avphys_pages):
Likewise.
mq_receive calls mq_timedreceive, and mq_send calls mq_timedsend. But
mq_receive and mq_send were in POSIX by 1996, while mq_timed* were
added in the 2001 edition of POSIX. This patch fixes this by making
mq_timed* into weak aliases for __mq_timed* and calling the
__mq_timed* names.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18545]
* rt/mq_timedreceive.c (mq_timedreceive): Rename to
__mq_timedreceive and define as alias of __mq_timedreceive. Use
hidden_weak.
* rt/mq_timedsend.c (mq_timedsend): Rename to __mq_timedsend and
define as alias of __mq_timedsend. Use hidden_weak.
* sysdeps/unix/sysv/linux/syscalls.list (mq_timedsend): Use
__mq_timedsend as strong name.
(mq_timedreceive): Use __mq_timedreceive as strong name.
* include/mqueue.h (__mq_timedsend): Declare. Use hidden_proto.
(__mq_timedreceive): Likewise.
* sysdeps/unix/sysv/linux/mq_receive.c (mq_receive): Call
__mq_timedreceive instead of mq_timedreceive.
* sysdeps/unix/sysv/linux/mq_send.c (mq_send): Call __mq_timedsend
instead of mq_timedsend.
* conform/Makefile (test-xfail-UNIX98/mqueue.h/linknamespace):
Remove variable.
The syscall wrappers mechanism automatically creates hidden aliases
for syscalls with libc_hidden_def / libc_hidden_weak. The use of
libc_hidden_* has the side-effect that for syscall wrappers in
non-libc libraries those aliases are not created. In turn, this means
that three mq_* syscalls in sysdeps/unix/sysv/linux/syscalls.list list
the __GI_* names explicitly.
The use of libc_hidden_* dates back to the original introduction of
that support in
2002-08-03 Roland McGrath <roland@redhat.com>
* sysdeps/unix/make-syscalls.sh: Generate libc_hidden_def or
libc_hidden_weak for every system call symbol defined.
(predating the non-libc syscalls in question) and I see no reason for
excluding non-libc syscalls. This patch changes the code to use
hidden_def / hidden_weak (via a wrapper syscall_hidden_def in the case
where the argument is itself a macro, so that the argument gets
expanded before concatenation with __GI_), so avoiding the need to
specify the hidden aliases explicitly in this case.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed stripped shared libraries is unchanged by the patch; the
mq_* symbols change from weak to strong, which is of no significance
and two of them will shortly change back to weak as part of a fix for
bug 18545).
* sysdeps/unix/make-syscalls.sh (emit_weak_aliases): Use
hidden_def and hidden_weak instead of libc_hidden_def and
libc_hidden_weak.
(top level): Refer to hidden_def in comment.
* sysdeps/unix/syscall-template.S (syscall_hidden_def): New
macro. Use it instead of libc_hidden_def.
* sysdeps/unix/sysv/linux/syscalls.list (mq_timedsend): Do not
specify __GI_* name explicitly.
(mq_timedreceive): Likewise.
(mq_setattr): Likewise.
Continuing the removal of unused __libc_* function names, this patch
removes the __libc_nanosleep name.
Tested for x86_64 (testsuite, and that the disassembly of installed
shared libraries is unchanged by the patch; __nanosleep changes from
weak to strong, which is of no significance).
* posix/nanosleep.c (__libc_nanosleep): Rename to __nanosleep.
(__nanosleep): Do not define as alias.
(nanosleep): Define as alias of __nanosleep.
* sysdeps/unix/sysv/linux/syscalls.list (nanosleep): Remove
__libc_nanosleep name.
glibc has lots of __libc_* function names that no longer serve any
purpose (are not used for any calls or exported at a public symbol
version). This patch removes __libc_creat. It has the effect of
creat becoming a strong symbol instead of a weak symbol in various
cases, but that's fine; in shared libraries it doesn't matter at all,
while for static linking the only other symbol sometimes defined in
the same object is creat64, and whenever creat64 is a reserved name so
is creat.
Other such cases of unnecessary __libc_* symbols are expected to be
dealt with in separate patches over time.
Tested for x86_64 (testsuite, and that the disassembly of installed
shared libraries is unchanged by the patch).
* include/fcntl.h (__libc_creat): Remove declaration.
* io/creat.c (__libc_creat): Rename to creat.
(creat): Do not define as alias.
* sysdeps/unix/sysv/linux/alpha/creat.c (creat64): Define as alias
of creat instead of __libc_creat.
* sysdeps/unix/sysv/linux/generic/creat.c (__libc_creat): Rename
to creat.
(creat): Do not define as alias.
[__WORDSIZE == 64] (creat64): Define as alias of creat instead of
__libc_creat.
* sysdeps/unix/sysv/linux/syscalls.list (creat): Do not define
__libc_creat name.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list (creat):
Likewise.
Bug 14132 is removal of the old INTDEF/INTUSE system of *_internal
aliases as obsoleted by the hidden_proto / hidden_def system. Various
cases were cleaned up in 2012, but some remain. This patch removes
the use of this mechanism for __adjtimex.
Tested for x86_64 that stripped installed shared libraries are
unchanged by the patch.
[BZ #14132]
* sysdeps/unix/sysv/linux/include/sys/timex.h: New file.
* sysdeps/unix/sysv/linux/adjtime.c [!ADJTIMEX] (ADJTIMEX): Do not
use INTUSE.
[!ADJTIMEX] (INTUSE(__adjtimex)): Remove declaration.
* sysdeps/unix/sysv/linux/alpha/adjtime.c (__adjtimex_internal):
Remove alias.
(__adjtimex): Define using libc_hidden_ver.
* sysdeps/unix/sysv/linux/ntp_gettime.c (INTUSE(__adjtimex)):
Remove declaration.
(ntp_gettime): Call __adjtimex directly.
* sysdeps/unix/sysv/linux/ntp_gettimex.c (INTUSE(__adjtimex)):
Remove declaration.
(ntp_gettimex): Call __adjtimex directly.
* sysdeps/unix/sysv/linux/syscalls.list (adjtimex): Remove
__adjtimex_internal alias.
Continuing the move of syscall definitions to syscalls.list, where
previous cleanups have made this possible, this patch moves the
definition of execve. (In this case, it was the removal of bounded
pointers support, rather than old kernel support, which made the move
possible.)
Tested for x86_64.
[BZ #14138]
* sysdeps/unix/sysv/linux/execve.c: Remove file.
* sysdeps/unix/sysv/linux/syscalls.list (execve): Add syscall.
Continuing the move of syscall definitions to syscalls.list, where the
removal of support for old kernel versions has made this possible,
this patch moves definitions of various *at functions in
sysdeps/unix/sysv/linux/.
These particular moves are straightforward: there are no #includes of
these source files, no special architecture-specific versions, no
special symbol version handling and no aliases. Each source file can
be replaced by a single line in sysdeps/unix/sysv/linux/syscalls.list.
Tested for x86_64.
[BZ #14138]
* sysdeps/unix/sysv/linux/syscalls.list (fchownat): New syscall.
(linkat): Likewise.
(mkdirat): Likewise.
(readlinkat): Likewise.
(renameat): Likewise.
(symlinkat): Likewise.
(unlinkat): Likewise.
* sysdeps/unix/sysv/linux/fchownat.c: Remove file.
* sysdeps/unix/sysv/linux/linkat.c: Likewise.
* sysdeps/unix/sysv/linux/mkdirat.c: Likewise.
* sysdeps/unix/sysv/linux/readlinkat.c: Likewise.
* sysdeps/unix/sysv/linux/renameat.c: Likewise.
* sysdeps/unix/sysv/linux/symlinkat.c: Likewise.
* sysdeps/unix/sysv/linux/unlinkat.c: Likewise.