If you remove the "override CFLAGS += -Wno-uninitialized" in
math/Makefile, you get errors from lgamma implementations of the form:
../sysdeps/ieee754/dbl-64/e_lgamma_r.c: In function '__ieee754_lgamma_r':
../sysdeps/ieee754/dbl-64/e_lgamma_r.c:297:13: error: 'nadj' may be used uninitialized in this function [-Werror=maybe-uninitialized]
if(hx<0) r = nadj - r;
This is one of the standard kinds of false positive uninitialized
warnings: nadj is set under a certain condition, and then later used
under the same condition. This patch uses DIAG_* macros to suppress
the warning on the use of nadj. The ldbl-128 / ldbl-128ibm
implementation has a substantially different structure that avoids
this issue.
Tested for x86_64. (In fact this patch eliminates the need for that
-Wno-uninitialized on x86_64, but I want to test on more architectures
before removing it.)
* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Include <libc-internal.h>.
(__ieee754_lgamma_r): Ignore uninitialized warnings around use of
NADJ.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c: Include <libc-internal.h>.
(__ieee754_lgammaf_r): Ignore uninitialized warnings around use of
NADJ.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c: Include <libc-internal.h>.
(__ieee754_lgammal_r): Ignore uninitialized warnings around use of
NADJ.
If you remove the "override CFLAGS += -Wno-uninitialized" in
math/Makefile, one of the errors you get is:
../sysdeps/ieee754/dbl-64/mpa.c: In function '__mp_dbl.part.0':
../sysdeps/ieee754/dbl-64/mpa.c:183:5: error: 'c' may be used uninitialized in this function [-Werror=maybe-uninitialized]
c *= X[0];
The problem is that the p < 5 case initializes c if p is 1, 2, 3 or 4
but not otherwise, and in fact p is positive for all calls to this
function so the uninitialized case can't actually occur. This patch
replaces the "if (p == 4)" last case with a comment so the compiler
can see that all paths do initialize c.
Tested for x86_64.
* sysdeps/ieee754/dbl-64/mpa.c (norm): Remove if condition on
(p == 4) case.
This patch removes the specialized i386 assembly implementations for
fallocate{64}, pselect, and sync_file_range now that i386 have
support for 6 argument syscalls.
ldbl-96 remquol wrongly handles the case where the first argument is
finite and the second infinite, because the check for the second
argument being a NaN fails to disregard the explicit high mantissa bit
and so wrongly interprets an infinity as being a NaN. This patch
fixes this by masking off that bit, and improves test coverage for
both remainder and remquo (various cases were missing tests, or, as in
the case of the bug, were tested only for one of the two functions).
Tested for x86_64 and x86.
[BZ #18244]
* sysdeps/ieee754/ldbl-96/s_remquol.c (__remquol): Ignore explicit
high mantissa bit when testing whether P is a NaN.
* math/libm-test.inc (remainder_test_data): Add more tests.
(remquo_test_data): Likewise.
The i386 implementation of atanhl, for small arguments, does a
calculation that involves computing twice the square of the argument,
resulting in spurious underflows for some arguments. This patch fixes
this by just returning the argument when its exponent is below -32,
with underflow being forced as needed for subnormal arguments.
Tested for x86 and x86_64.
[BZ #18049]
* sysdeps/i386/fpu/e_atanhl.S (__ieee754_atanhl): For exponents
below -32, return the argument, with underflow if subnormal.
* math/auto-libm-test-in: Add more tests of atanh.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some atanh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes. (No change in this regard is needed
for the i386 implementation; special handling to force underflows in
these cases will only be needed there when the spurious underflows,
bug 18049, get fixed.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16352]
* sysdeps/i386/fpu/e_atanh.S (dbl_min): New object.
(__ieee754_atanh): Force underflow exception for results with
small absolute value.
* sysdeps/i386/fpu/e_atanhf.S (flt_min): New object.
(__ieee754_atanhf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/dbl-64/e_atanh.c: Include <float.h>.
(__ieee754_atanh): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/flt-32/e_atanhf.c: Include <float.h>.
(__ieee754_atanhf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-96/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* math/auto-libm-test-in: Do not allow missing underflow
exceptions from atanh.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of tanf produces spurious underflow
exceptions for some small arguments, through computing values on the
order of x^5. This patch fixes this by adjusting the threshold for
returning x (or, as applicable, +/- 1/x) to 2**-13 (the next term in
the power series being x^3/3).
Tested for x86_64 and x86.
[BZ #18221]
* sysdeps/ieee754/flt-32/k_tanf.c (__kernel_tanf): Use 2**-13 not
2**-28 as threshold for returning x or +/- 1/x.
* math/auto-libm-test-in: Add more tests of tan.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of lgammaf produces spurious underflow
exceptions for some large arguments, because of calculations involving
x^-2 multiplied by small constants. This patch fixes this by
adjusting the threshold for a simpler computation to 2**26 (the error
in the simpler computation is on the order of 0.5 * log (x), for a
result on the order of x * log (x)).
Tested for x86_64 and x86.
[BZ #18220]
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Use
2**26 not 2**58 as threshold for returning x * (log (x) - 1).
* math/auto-libm-test-in: Add another test of lgamma.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of erfcf produces spurious underflow
exceptions for some arguments close to 0, because of calculations
squaring the argument and then multiplying by small constants. This
patch fixes this by adjusting the threshold for arguments for which
the result is so close to 1 that 1 - x will give the right result from
2**-56 to 2**-26. (If 1 - x * 2/sqrt(pi) were used, the errors would be
on the order of x^3 and a much larger threshold could be used.)
Tested for x86_64 and x86.
[BZ #18217]
* sysdeps/ieee754/flt-32/s_erff.c (__erfcf): Use 2**-26 not 2**-56
as threshold for returning 1 - x.
* math/auto-libm-test-in: Add more tests of erfc.
* math/auto-libm-test-out: Regenerated.
The sysdeps/ieee754/flt-32 version of atanf produces spurious
underflow exceptions for some large arguments, because of computations
that compute x^-4. This patch fixes this by adjusting the threshold
for large arguments (for which +/- pi/2 can just be returned, the
correct result being roughly +/- pi/2 - 1/x) from 2^34 to 2^25.
Tested for x86_64 and x86.
[BZ #18196]
* sysdeps/ieee754/flt-32/s_atanf.c (__atanf): Use 2^25 not 2^34 as
threshold for large arguments.
* math/auto-libm-test-in: Add another test of atan.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some log1p implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes. (The ldbl-128ibm implementation
doesn't currently need any change as it already generates this
exception, albeit through code that would generate spurious exceptions
in other cases; special code for this issue will only be needed there
when fixing the spurious exceptions.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16339]
* sysdeps/i386/fpu/s_log1p.S (dbl_min): New object.
(__log1p): Force underflow exception for results with small
absolute value.
* sysdeps/i386/fpu/s_log1pf.S (flt_min): New object.
(__log1pf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/dbl-64/s_log1p.c: Include <float.h>.
(__log1p): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/flt-32/s_log1pf.c: Include <float.h>.
(__log1pf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_log1pl.c: Include <float.h>.
(__log1pl): Force underflow exception for results with small
absolute value.
* math/auto-libm-test-in: Do not allow missing underflow
exceptions from log1p.
* math/auto-libm-test-out: Regenerated.
To make a strtok faster and improve performance in general we need to do one
additional change.
A comment:
/* It doesn't make sense to send libc-internal strcspn calls through a PLT.
The speedup we get from using SSE4.2 instruction is likely eaten away
by the indirect call in the PLT. */
Does not make sense at all because nobody bothered to check it. Gap
between these implementations is quite big, when haystack is empty a
sse2 is around 40 cycles slower because it needs to populate a lookup
table and difference only increases with size. That is much bigger than
plt slowdown which is few cycles.
Even benchtest show a gap which also may be reverse by branch
misprediction but my internal benchmark shown.
simple_strspn stupid_strspn __strspn_sse42 __strspn_sse2
Length 0, alignment 0, acc len 6: 18.6562 35.2344 17.0469 61.6719
Length 6, alignment 0, acc len 6: 59.5469 72.5781 16.4219 73.625
This patch also handles strpbrk which is implemented by including a
x86_64/multiarch/strcspn.S file.
* sysdeps/x86_64/multiarch/strspn.S: Remove plt indirection.
* sysdeps/x86_64/multiarch/strcspn.S: Likewise.
Programs are supposed to be able to define the __fpu_control variable,
overriding the library's version to cause the floating-point control
word to be set to the chosen value at startup.
This is broken for mips16 for static linking because the library's
__fpu_control variable is in the same object file as the helper
functions used by fpu_control.h for mips16, so test-fpucw-ieee-static
fails to link with multiple definitions of __fpu_control.
This patch fixes this by putting the helpers in a separate file rather
than overriding fpu_control.c. Tested for mips16 that this fixes the
link failure and the ABI tests still pass.
[BZ #18397]
* sysdeps/mips/mips32/fpu/fpu_control.c: Move to ....
* sysdeps/mips/mips32/fpu/fpucw-helpers.c: ... here. Include
<fpu_control.h> instead of <math/fpu_control.c>.
* sysdeps/mips/mips32/fpu/Makefile: New file.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of csqrt, lgamma, log10
and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
There appears to be a discrepancy among the implementations
of setcontext with regards to the function called once the last
linked-to context has finished executing via setcontext.
The POSIX standard says:
~~~
If the uc_link member of the ucontext_t structure pointed to by
the ucp argument is equal to 0, then this context is the main
context, and the thread will exit when this context returns.
~~~
It says "exit" not "exit immediately" nor "exit without running
functions registered with atexit or on_exit."
Therefore the AArch64, ARM, hppa and NIOS II implementations are
wrong and no test detects it.
It is questionable if this should even be fixed or just documented
that the above 4 targets are wrong. The functions are deprecated
and nobody should be using them, but at the same time it silly to
have cross-target differences that make it hard to port old
applications from say x86_64 to AArch64.
Therefore I will ix the 4 arches, and checkin a regression
test to prevent it from changing again.
https://sourceware.org/ml/libc-alpha/2015-03/msg00720.html
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of acosh, atanh, cos,
csqrt, erfc, sin and sincos.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64. (This process
must eventually converge, when my random test generation stops finding
inputs that increase the listed ulps, except maybe for any cases
uncovered where the errors exceed the maximum allowed 9ulp error and
so indicate actual libm bugs needing fixing.)
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of acosh, atanh, clog,
clog10, csqrt, erfc, exp2, expm1, log10, log2 and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of atan, clog, clog10,
cos, csqrt, erf, erfc, exp2, lgamma, log1p, sin, sincos, tanh and
tgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tgamma that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tanh that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tan that are observed
to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tan.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of cos, sin and sincos
that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cos, sin and sincos.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds a randomly-generated test of pow that is observed to
increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
This patch adds some randomly-generated tests of lgamma that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of log, log10, log1p and
log2 that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of log, log10, log2 and
log1p.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of exp, exp10, exp2 and
expm1 that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of exp, exp10, exp2 and
expm1.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of erf and erfc that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of erf and erfc.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of csqrt that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of csqrt.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some further randomly-generated tests of cosh and sinh
that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cosh and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Since glibc is no longer built with -Winline, a special MIPS version
of waitid.c to disable -Winline is no longer needed, and this patch
removes it. Tested that glibc does indeed build with the patch
applied.
* sysdeps/unix/sysv/linux/mips/mips32/waitid.c: Remove file.