PowerPC kernel now provides a vDSO implementation for time syscall
(commit fcb41a2030abe0eb716ef0798035ef9562097f42). This patch changes
time syscall wrapper to use the vDSO when available. It also changes
the default non vDSO time on PowerPC to use sysdeps/posix/time.c
(since gettimeofday is a vDSO call).
* sysdeps/gnu/netinet/tcp.h (TCP_TIMESTAMP): New value, from
Linux 3.9.
* sysdeps/unix/sysv/linux/bits/socket.h (PF_VSOCK, AF_VSOCK):
Add.
(PF_MAX): Adjust for VSOCK change.
Kay Sievers reported that coreutils' stat tool has a problem with
s390's statfs[64] definition:
> The definition of struct statfs::f_type needs a fix. s390 is the only
> architecture in the kernel that uses an int and expects magic
> constants lager than INT_MAX to fit into.
>
> A fix is needed to make Fedora boot on s390, it currently fails to do
> so. Userspace does not want to add code to paper-over this issue.
[...]
> Even coreutils cannot handle it:
> #define RAMFS_MAGIC 0x858458f6
> # stat -f -c%t /
> ffffffff858458f6
>
> #define BTRFS_SUPER_MAGIC 0x9123683E
> # stat -f -c%t /mnt
> ffffffff9123683e
The bug is caused by an implicit sign extension within the stat tool:
out_uint_x (pformat, prefix_len, statfsbuf->f_type);
where the format finally will be "%lx".
A similar problem can be found in the 'tail' tool.
s390 is the only architecture which has an int type f_type member in
struct statfs[64]. Other architectures have either unsigned ints or
long values, so that the problem doesn't occur there.
Therefore change the type of the f_type member to unsigned int, so
that we get zero extension instead sign extension when assignment to
a long value happens.
Reported-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Fix BZ #15305.
On kernel versions earlier than 2.6.29, the Linux kernel exported a
sysctl called restrict_chown for xfs, which could be used to allow
chown to users other than the owner. 2.6.29 removed this support,
causing the open_not_cancel_2 to fail and thus modify errno. The fix
is to save and restore errno so that the caller sees it as unmodified.
Additionally, since the code to check the sysctl is not useful on
newer kernels, we add an ifdef so that in future the code block gets
rmeoved completely.
Fixes BZ #12723
The variable pipe buffer size does nothing to the value of PIPE_BUF,
since the number of bytes that are atomically written is still
PIPE_BUF on Linux.
* sysdeps/unix/sysv/linux/bits/mman-linux.h (MAP_ANONYMOUS):
Allow definition via __MAP_ANONYMOUS.
* sysdeps/unix/sysv/linux/mips/bits/mman.h: Remove all defines
provided by bits/mman-linux.h and include <bits/mman-linux.h>.
(__MAP_ANONYMOUS): Define.
* sysdeps/unix/sysv/linux/s390/bits/mman.h: Include
<bits/mman-linux.h>.
(MCL_CURRENT, MCL_FUTURE): Do not define here, the generic value
is fine.
* sysdeps/unix/sysv/linux/sh/bits/mman.h: Move include of
<bits/mman-linux.h> to end of file.
(MCL_CURRENT, MCL_FUTURE): Do not define here, the generic value
is fine.
* sysdeps/unix/sysv/linux/x86/bits/mman.h: Move include of
<bits/mman-linux.h> to end of file.
(MCL_CURRENT, MCL_FUTURE): Do not define here, the generic value
is fine.
* sysdeps/unix/sysv/linux/sparc/bits/mman.h: Move include of
<bits/mman-linux.h> to end of file.
* sysdeps/unix/sysv/linux/bits/mman-linux.h [!MCL_CURRENT]
(MCL_CURRENT, MCL_FUTURE): Define here.
* sysdeps/unix/sysv/linux/bits/mman-linux.h: New file, with
Linux common definitions.
* sysdeps/unix/sysv/linux/sh/bits/mman.h: Remove all defines
provided by bits/mman-linux.h and include <bits/mman-linux.h>.
* sysdeps/unix/sysv/linux/x86/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/mman.h: Likewise.
This feature is specifically for the C++ compiler to offload calling
thread_local object destructors on thread program exit, to glibc.
This is to overcome the possible complication of destructors of
thread_local objects getting called after the DSO in which they're
defined is unloaded by the dynamic linker. The DSO is marked as
'unloadable' if it has a constructed thread_local object and marked as
'unloadable' again when all the constructed thread_local objects
defined in it are destroyed.