This will be used to consolidate the libgcc_s access for backtrace
and pthread_cancel.
Unlike the existing backtrace implementations, it provides some
hardening based on pointer mangling.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
It turns out the startup code in csu/elf-init.c has a perfect pair of
ROP gadgets (see Marco-Gisbert and Ripoll-Ripoll, "return-to-csu: A
New Method to Bypass 64-bit Linux ASLR"). These functions are not
needed in dynamically-linked binaries because DT_INIT/DT_INIT_ARRAY
are already processed by the dynamic linker. However, the dynamic
linker skipped the main program for some reason. For maximum
backwards compatibility, this is not changed, and instead, the main
map is consulted from __libc_start_main if the init function argument
is a NULL pointer.
For statically linked binaries, the old approach based on linker
symbols is still used because there is nothing else available.
A new symbol version __libc_start_main@@GLIBC_2.34 is introduced because
new binaries running on an old libc would not run their ELF
constructors, leading to difficult-to-debug issues.
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
setjmp() uses C code to store current registers into jmp_buf
environment. -fstack-protector-all places canary into setjmp()
prologue and clobbers 'a5' before it gets saved.
The change inhibits stack canary injection to avoid clobber.
Now __thread_gscope_wait (the function behind THREAD_GSCOPE_WAIT,
formerly __wait_lookup_done) can be implemented directly in ld.so,
eliminating the unprotected GL (dl_wait_lookup_done) function
pointer.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
There are several compiler implementations that allow large stack
allocations to jump over the guard page at the end of the stack and
corrupt memory beyond that. See CVE-2017-1000364.
Compilers can emit code to probe the stack such that the guard page
cannot be skipped, but on aarch64 the probe interval is 64K by default
instead of the minimum supported page size (4K).
This patch enforces at least 64K guard on aarch64 unless the guard
is disabled by setting its size to 0. For backward compatibility
reasons the increased guard is not reported, so it is only observable
by exhausting the address space or parsing /proc/self/maps on linux.
On other targets the patch has no effect. If the stack probe interval
is larger than a page size on a target then ARCH_MIN_GUARD_SIZE can
be defined to get large enough stack guard on libc allocated stacks.
The patch does not affect threads with user allocated stacks.
Fixes bug 26691.
This patch changes the exp10f error handling semantics to only set
errno according to POSIX rules. New symbol version is introduced at
GLIBC_2.32. The old wrappers are kept for compat symbols.
There are some outliers that need special handling:
- ia64 provides an optimized implementation of exp10f that uses ia64
specific routines to set SVID compatibility. The new symbol version
is aliased to the exp10f one.
- m68k also provides an optimized implementation, and the new version
uses it instead of the sysdeps/ieee754/flt32 one.
- riscv and csky uses the generic template implementation that
does not provide SVID support. For both cases a new exp10f
version is not added, but rather the symbols version of the
generic sysdeps/ieee754/flt32 is adjusted instead.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
powerpc64le-linux-gnu.
With mathinline removal there is no need to keep building and testing
inline math tests.
The gen-libm-tests.py support to generate ULP_I_* is removed and all
libm-test-ulps files are updated to longer have the
i{float,double,ldouble} entries. The support for no-test-inline is
also removed from both gen-auto-libm-tests and the
auto-libm-test-out-* were regenerated.
Checked on x86_64-linux-gnu and i686-linux-gnu.
This is similar to x86 (da75c1b180) and powerpc (32ea729996)
mathinline.h removal. The required macros to build the fpu routines
are moved to mathimpl.h, while the inline optimization macros for
atan, tanh, rint, log1p, significand, trunc, floor, ceil, isinf,
finite, scalbn, isnan, scalbln, nearbyint, lrint, and sincos are removed.
The gcc bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94204 was
created to track builtin support.
Checked with a build against m68k-linux-gnu, resulting binaries
are similar with and without the patch.
This supersedes the init_array sysdeps directory. It allows us to
check for ELF_INITFINI in both C and assembler code, and skip DT_INIT
and DT_FINI processing completely on newer architectures.
A new header file is needed because <dl-machine.h> is incompatible
with assembler code. <sysdep.h> is compatible with assembler code,
but it cannot be included in all assembler files because on some
architectures, it redefines register names, and some assembler files
conflict with that.
<elf-initfini.h> is replicated for legacy architectures which need
DT_INIT/DT_FINI support. New architectures follow the generic default
and disable it.
With all Linux ABIs using the expected Linux kABI to indicate
syscalls errors, the INTERNAL_SYSCALL_DECL is an empty declaration
on all ports.
This patch removes the 'err' argument on INTERNAL_SYSCALL* macro
and remove the INTERNAL_SYSCALL_DECL usage.
Checked with a build against all affected ABIs.
This is a preparatory patch to enable building a _Float128
variant to ease reuse when building a _Float128 variant to
alias this long double only symbol.
Notably, stubs are added where missing to the native _Float128
sysdep dir to prevent building these newly templated variants
created inside the build directories.
Also noteworthy are the changes around LIBM_SVID_COMPAT. These
changes are not intuitive. The templated version is only
enabled when !LIBM_SVID_COMPAT, and the compat version is
predicated entirely on LIBM_SVID_COMPAT. Thus, exactly one is
stubbed out entirely when building. The nldbl scalb compat
files are updated to account for this.
Likewise, fixup the reuse of m68k's e_scalb{f,l}.c to include
it's override of e_scalb.c. Otherwise, the search path finds
the templated copy in the build directory. This could be
futher simplified by providing an overridden template, but I
lack the hardware to verify.
This patch adds a new macro, libm_alias_finite, to define all _finite
symbol. It sets all _finite symbol as compat symbol based on its first
version (obtained from the definition at built generated first-versions.h).
The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need
special treatment in code that is shared between long double and float128.
It is done by adding a list, similar to internal symbol redifinition,
on sysdeps/ieee754/float128/float128_private.h.
Alpha also needs some tricky changes to ensure we still emit 2 compat
symbols for sqrt(f).
Passes buildmanyglibc.
Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
This patch adds a default pthread-offsets.h based on default
thread definitions from struct_mutex.h and struct_rwlock.h.
The idea is to simplify new ports inclusion.
Checked with a build on affected abis.
Change-Id: I7785a9581e651feb80d1413b9e03b5ac0452668a
This patch adds a new generic __pthread_rwlock_arch_t definition meant
to be used by new ports. Its layout mimics the current usage on some
64 bits ports and it allows some ports to use the generic definition.
The arch __pthread_rwlock_arch_t definition is moved from
pthreadtypes-arch.h to another arch-specific header (struct_rwlock.h).
Also the static intialization macro for pthread_rwlock_t is set to use
an arch defined on (__PTHREAD_RWLOCK_INITIALIZER) which simplifies its
implementation.
The default pthread_rwlock_t layout differs from current ports with:
1. Internal layout is the same for 32 bits and 64 bits.
2. Internal flag is an unsigned short so it should not required
additional padding to align for word boundary (if it is the case
for the ABI).
Checked with a build on affected abis.
Change-Id: I776a6a986c23199929d28a3dcd30272db21cd1d0
The current way of defining the common mutex definition for POSIX and
C11 on pthreadtypes-arch.h (added by commit 06be6368da) is
not really the best options for newer ports. It requires define some
misleading flags that should be always defined as 0
(__PTHREAD_COMPAT_PADDING_MID and __PTHREAD_COMPAT_PADDING_END), it
exposes options used solely for linuxthreads compat mode
(__PTHREAD_MUTEX_USE_UNION and __PTHREAD_MUTEX_NUSERS_AFTER_KIND), and
requires newer ports to explicit define them (adding more boilerplate
code).
This patch adds a new default __pthread_mutex_s definition meant to
be used by newer ports. Its layout mimics the current usage on both
32 and 64 bits ports and it allows most ports to use the generic
definition. Only ports that use some arch-specific definition (such
as hardware lock-elision or linuxthreads compat) requires specific
headers.
For 32 bit, the generic definitions mimic the other 32-bit ports
of using an union to define the fields uses on adaptive and robust
mutexes (thus not allowing both usage at same time) and by using a
single linked-list for robust mutexes. Both decisions seemed to
follow what recent ports have done and make the resulting
pthread_mutex_t/mtx_t object smaller.
Also the static intialization macro for pthread_mutex_t is set to use
a macro __PTHREAD_MUTEX_INITIALIZER where the architecture can redefine
in its struct_mutex.h if it requires additional fields to be
initialized.
Checked with a build on affected abis.
Change-Id: I30a22c3e3497805fd6e52994c5925897cffcfe13
The new rwlock implementation added by cc25c8b4c1 (2.25) removed
support for lock-elision. This patch removes remaining the
arch-specific unused definitions.
Checked with a build against all affected ABIs.
Change-Id: I5dec8af50e3cd56d7351c52ceff4aa3771b53cd6
This patch new build tests to check for internal fields offsets for
internal pthread_rwlock_t definition. Althoug the '__data.__flags'
field layout should be preserved due static initializators, the patch
also adds tests for the futexes that may be used in a shared memory
(although using different libc version in such scenario is not really
supported).
Checked with a build against all affected ABIs.
Change-Id: Iccc103d557de13d17e4a3f59a0cad2f4a640c148
The offsets of pthread_mutex_t __data.__nusers, __data.__spins,
__data.elision, __data.list are not required to be constant over
the releases. Only the __data.__kind is used for static
initializers.
This patch also adds an additional size check for __data.__kind.
Checked with a build against affected ABIs.
Change-Id: I7a4e48cc91b4c4ada57e9a5d1b151fb702bfaa9f
With only two exceptions (sys/types.h and sys/param.h, both of which
historically might have defined BYTE_ORDER) the public headers that
include <endian.h> only want to be able to test __BYTE_ORDER against
__*_ENDIAN.
This patch creates a new bits/endian.h that can be included by any
header that wants to be able to test __BYTE_ORDER and/or
__FLOAT_WORD_ORDER against the __*_ENDIAN constants, or needs
__LONG_LONG_PAIR. It only defines macros in the implementation
namespace.
The existing bits/endian.h (which could not be included independently
of endian.h, and only defines __BYTE_ORDER and maybe __FLOAT_WORD_ORDER)
is renamed to bits/endianness.h. I also took the opportunity to
canonicalize the form of this header, which we are stuck with having
one copy of per architecture. Since they are so short, this means git
doesn’t understand that they were renamed from existing headers, sigh.
endian.h itself is a nonstandard header and its only remaining use
from a standard header is guarded by __USE_MISC, so I dropped the
__USE_MISC conditionals from around all of the public-namespace things
it defines. (This means, an application that requests strict library
conformance but includes endian.h will still see the definition of
BYTE_ORDER.)
A few changes to specific bits/endian(ness).h variants deserve
mention:
- sysdeps/unix/sysv/linux/ia64/bits/endian.h is moved to
sysdeps/ia64/bits/endianness.h. If I remember correctly, ia64 did
have selectable endianness, but we have assembly code in
sysdeps/ia64 that assumes it’s little-endian, so there is no reason
to treat the ia64 endianness.h as linux-specific.
- The C-SKY port does not fully support big-endian mode, the compile
will error out if __CSKYBE__ is defined.
- The PowerPC port had extra logic in its bits/endian.h to detect a
broken compiler, which strikes me as unnecessary, so I removed it.
- The only files that defined __FLOAT_WORD_ORDER always defined it to
the same value as __BYTE_ORDER, so I removed those definitions.
The SH bits/endian(ness).h had comments inconsistent with the
actual setting of __FLOAT_WORD_ORDER, which I also removed.
- I *removed* copyright boilerplate from the few bits/endian(ness).h
headers that had it; these files record a single fact in a fashion
dictated by an external spec, so I do not think they are copyrightable.
As long as I was changing every copy of ieee754.h in the tree, I
noticed that only the MIPS variant includes float.h, because it uses
LDBL_MANT_DIG to decide among three different versions of
ieee854_long_double. This patch makes it not include float.h when
GCC’s intrinsic __LDBL_MANT_DIG__ is available.
* string/endian.h: Unconditionally define LITTLE_ENDIAN,
BIG_ENDIAN, PDP_ENDIAN, and BYTE_ORDER. Condition byteswapping
macros only on !__ASSEMBLER__. Move the definitions of
__BIG_ENDIAN, __LITTLE_ENDIAN, __PDP_ENDIAN, __FLOAT_WORD_ORDER,
and __LONG_LONG_PAIR to...
* string/bits/endian.h: ...this new file, which includes
the renamed header bits/endianness.h for the definition of
__BYTE_ORDER and possibly __FLOAT_WORD_ORDER.
* string/Makefile: Install bits/endianness.h.
* include/bits/endian.h: New wrapper.
* bits/endian.h: Rename to bits/endianness.h.
Add multiple-include guard. Rewrite the comment explaining what
the machine-specific variants of this file should do.
* sysdeps/unix/sysv/linux/ia64/bits/endian.h:
Move to sysdeps/ia64.
* sysdeps/aarch64/bits/endian.h
* sysdeps/alpha/bits/endian.h
* sysdeps/arm/bits/endian.h
* sysdeps/csky/bits/endian.h
* sysdeps/hppa/bits/endian.h
* sysdeps/ia64/bits/endian.h
* sysdeps/m68k/bits/endian.h
* sysdeps/microblaze/bits/endian.h
* sysdeps/mips/bits/endian.h
* sysdeps/nios2/bits/endian.h
* sysdeps/powerpc/bits/endian.h
* sysdeps/riscv/bits/endian.h
* sysdeps/s390/bits/endian.h
* sysdeps/sh/bits/endian.h
* sysdeps/sparc/bits/endian.h
* sysdeps/x86/bits/endian.h:
Rename to endianness.h; canonicalize form of file; remove
redundant definitions of __FLOAT_WORD_ORDER.
* sysdeps/powerpc/bits/endianness.h: Remove logic to check for
broken compilers.
* ctype/ctype.h
* sysdeps/aarch64/nptl/bits/pthreadtypes-arch.h
* sysdeps/arm/nptl/bits/pthreadtypes-arch.h
* sysdeps/csky/nptl/bits/pthreadtypes-arch.h
* sysdeps/ia64/ieee754.h
* sysdeps/ieee754/ieee754.h
* sysdeps/ieee754/ldbl-128/ieee754.h
* sysdeps/ieee754/ldbl-128ibm/ieee754.h
* sysdeps/m68k/nptl/bits/pthreadtypes-arch.h
* sysdeps/microblaze/nptl/bits/pthreadtypes-arch.h
* sysdeps/mips/ieee754/ieee754.h
* sysdeps/mips/nptl/bits/pthreadtypes-arch.h
* sysdeps/nios2/nptl/bits/pthreadtypes-arch.h
* sysdeps/nptl/pthread.h
* sysdeps/riscv/nptl/bits/pthreadtypes-arch.h
* sysdeps/sh/nptl/bits/pthreadtypes-arch.h
* sysdeps/sparc/sparc32/ieee754.h
* sysdeps/unix/sysv/linux/generic/bits/stat.h
* sysdeps/unix/sysv/linux/generic/bits/statfs.h
* sysdeps/unix/sysv/linux/sys/acct.h
* wctype/bits/wctype-wchar.h:
Include bits/endian.h, not endian.h.
* sysdeps/unix/sysv/linux/hppa/pthread.h: Don’t include endian.h.
* sysdeps/mips/ieee754/ieee754.h: Use __LDBL_MANT_DIG__
in ifdefs, instead of LDBL_MANT_DIG. Only include float.h
when __LDBL_MANT_DIG__ is not predefined, in which case
define __LDBL_MANT_DIG__ to equal LDBL_MANT_DIG.
This patch rewrites wcpcpy using wcslen and wmemcpy. This is
similar to the optimizatio done on stpcpy by f559d8cf29.
Checked on x86_64-linux-gnu and string tests on a simulated
m68k-linux-gnu.
* sysdeps/m68k/wcpcpy.c: Remove file.
* wcsmbs/wcpcpy.c (__wcpcpy): Rewrite using wcslen and wmemcpy.
This patch fixes -Wimplicit-fallthrough warnings in system-specific
code that show up building glibc with -Wextra, by adding fall-through
comments, or moving existing such comments to the place required for
them to work (immediately before the case label being fallen through).
Tested with build-many-glibcs.py.
* sysdeps/i386/dl-machine.h (elf_machine_rela): Add fall-through
comments.
* sysdeps/m68k/m680x0/fpu/s_cexp_template.c (s(__cexp)): Likewise.
* sysdeps/m68k/memcopy.h (WORD_COPY_FWD): Likewise.
(WORD_COPY_BWD): Likewise.
* sysdeps/mach/hurd/ioctl.c (__ioctl): Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/iso-8859-1_cp037_z900.c (TR_LOOP): Likewise.
* sysdeps/mips/dl-machine.h (elf_machine_reloc): Move fall-through
comment.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
Introduce new pow symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_pow.c and enabled for targets with their own pow implementation or
ifunc dispatch on __ieee754_pow by including math/w_pow.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously powl was an alias of pow, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __pow_finite symbol is now an alias of pow. Both __pow_finite and
pow set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that
may affect that header.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add pow.
* math/w_pow_compat.c (__pow_compat): Change to versioned compat
symbol.
* math/w_pow.c: New file.
* sysdeps/i386/fpu/w_pow.c: New file.
* sysdeps/ia64/fpu/e_pow.S: Add versioned symbols.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Rename to __pow
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_pow.c: New file.
* sysdeps/m68k/m680x0/fpu/w_pow.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma.c (__ieee754_pow): Rename to
__pow.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma4.c (__ieee754_pow): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_pow.c (__ieee754_pow): Likewise.
* sysdeps/x86_64/fpu/multiarch/w_pow.c: New file.
Introduce new log2 symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_log2.c and enabled for targets with their own log2 implementation by
including math/w_log2.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously log2l was an alias of log2, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __log2_finite symbol is now an alias of log2. Both __log2_finite
and log2 set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add log2.
* math/w_log2_compat.c (__log2_compat): Change to versioned compat
symbol.
* math/w_log2.c: New file.
* sysdeps/i386/fpu/w_log2.c: New file.
* sysdeps/ia64/fpu/e_log2.S: Add versioned symbols.
* sysdeps/ieee754/dbl-64/e_log2.c (__ieee754_log2): Rename to __log2
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_log2.c: New file.
* sysdeps/m68k/m680x0/fpu/w_log2.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
Introduce new log symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_log.c and enabled for targets with their own log implementation by
including math/w_log.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously logl was an alias of log, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __log_finite symbol is now an alias of log. Both __log_finite and
log set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that may
affect that header.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add log.
* math/w_log_compat.c (__log_compat): Change to versioned compat
symbol.
* math/w_log.c: New file.
* sysdeps/i386/fpu/w_log.c: New file.
* sysdeps/ia64/fpu/e_log.S: Update.
* sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Rename to __log
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_log.c: New file.
* sysdeps/m68k/m680x0/fpu/w_log.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_log-avx.c (__ieee754_log): Rename to
__log.
* sysdeps/x86_64/fpu/multiarch/e_log-fma.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_log-fma4.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_log.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/w_log.c: New file.
Introduce new exp and exp2 symbol version that don't do SVID compatible
error handling. The standard errno and fp exception based error handling
is inline in the new code and does not have significant overhead.
The double precision wrappers are disabled for sysdeps/ieee754/dbl-64
by using empty w_exp.c and w_exp2.c files, the math/w_exp.c and
math/w_exp2.c files use the wrapper template and can be included by
targets that have their own exp and exp2 implementations or use ifunc
on the glibc internal __ieee754_exp symbol.
The compatibility symbol versions still use the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously expl and exp2l were aliases of exp and exp2,
now they point to the compatibility symbols with the wrapper, because
they still need the SVID compatible error handling. This affects
NO_LONG_DOUBLE (e.g arm) and LONG_DOUBLE_COMPAT (e.g. alpha) targets
as well.
The _finite symbols are now aliases of the standard symbols (they have
no performance advantage anymore). Both the standard symbols and
_finite symbols set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that may
affect that header (the new macro name is __exp instead of __ieee754_exp
which breaks some math.h macros).
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add exp and exp2.
* math/w_exp2_compat.c (__exp2_compat): Change to versioned compat
symbol, handle NO_LONG_DOUBLE and LONG_DOUBLE_COMPAT explicitly.
* math/w_exp_compat.c (__exp_compat): Likewise.
* math/w_exp.c: New file.
* math/w_exp2.c: New file.
* sysdeps/i386/fpu/w_exp.c: New file.
* sysdeps/i386/fpu/w_exp2.c: New file.
* sysdeps/ia64/fpu/e_exp.S: Add versioned symbols.
* sysdeps/ia64/fpu/e_exp2.S: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Rename to __exp
and add necessary aliases.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Rename to __exp2
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_exp.c: New file.
* sysdeps/ieee754/dbl-64/w_exp2.c: New file.
* sysdeps/m68k/m680x0/fpu/w_exp.c: New file.
* sysdeps/m68k/m680x0/fpu/w_exp2.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_exp-avx.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp-fma.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp.c (__ieee754_exp): Rename to
__exp.
* sysdeps/x86_64/fpu/multiarch/w_exp.c: New file.
The algorithm is exp(y * log(x)), where log(x) is computed with about
1.3*2^-68 relative error (1.5*2^-68 without fma), returning the result
in two doubles, and the exp part uses the same algorithm (and lookup
tables) as exp, but takes the input as two doubles and a sign (to handle
negative bases with odd integer exponent). The __exp1 internal symbol
is no longer necessary.
There is separate code path when fma is not available but the worst case
error is about 0.54 ULP in both cases. The lookup table and consts for
log are 4168 bytes. The .rodata+.text is decreased by 37908 bytes on
aarch64. The non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
pow thruput: 2.40x in [0.01 11.1]x[0.01 11.1]
pow latency: 1.84x in [0.01 11.1]x[0.01 11.1]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA, TOINT_INTRINSICS) and
arm-linux-gnueabihf (!defined __FP_FAST_FMA, !TOINT_INTRINSICS) and
x86_64-linux-gnu (!defined __FP_FAST_FMA, !TOINT_INTRINSICS) and
powerpc64le-linux-gnu (defined __FP_FAST_FMA, !TOINT_INTRINSICS) targets.
* NEWS: Mention pow improvements.
* math/Makefile (type-double-routines): Add e_pow_log_data.
* sysdeps/generic/math_private.h (__exp1): Remove.
* sysdeps/i386/fpu/e_pow_log_data.c: New file.
* sysdeps/ia64/fpu/e_pow_log_data.c: New file.
* sysdeps/ieee754/dbl-64/Makefile (CFLAGS-e_pow.c): Allow fma
contraction.
* sysdeps/ieee754/dbl-64/e_exp.c (__exp1): Remove.
(exp_inline): Remove.
(__ieee754_exp): Only single double input is handled.
* sysdeps/ieee754/dbl-64/e_pow.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_pow_log_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (issignaling_inline): Define.
(__pow_log_data): Define.
* sysdeps/ieee754/dbl-64/upow.h: Remove.
* sysdeps/ieee754/dbl-64/upow.tbl: Remove.
* sysdeps/m68k/m680x0/fpu/e_pow_log_data.c: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_pow-fma.c): Allow fma
contraction.
(CFLAGS-e_pow-fma4.c): Likewise.
Continuing the move to use, within libm, public names for libm
functions that can be inlined as built-in functions on many
architectures, this patch moves calls to __rint functions to call the
corresponding rint names instead, with asm redirection to __rint when
the calls are not inlined. The x86_64 math_private.h is removed as no
longer useful after this patch.
This patch is relative to a tree with my floor patch
<https://sourceware.org/ml/libc-alpha/2018-09/msg00148.html> applied,
and much the same considerations arise regarding possibly replacing an
IFUNC call with a direct inline expansion.
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (rint): Redirect
using MATH_REDIRECT.
* sysdeps/aarch64/fpu/s_rint.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_rintf.c: Likewise.
* sysdeps/alpha/fpu/s_rint.c: Likewise.
* sysdeps/alpha/fpu/s_rintf.c: Likewise.
* sysdeps/i386/fpu/s_rintl.c: Likewise.
* sysdeps/ieee754/dbl-64/s_rint.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_rint.c: Likewise.
* sysdeps/ieee754/float128/s_rintf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_rintf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/m68k/coldfire/fpu/s_rint.c: Likewise.
* sysdeps/m68k/coldfire/fpu/s_rintf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rint.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rintf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rintl.c: Likewise.
* sysdeps/powerpc/fpu/s_rint.c: Likewise.
* sysdeps/powerpc/fpu/s_rintf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_rint.c: Likewise.
* sysdeps/riscv/rvf/s_rintf.c: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/x86_64/fpu/math_private.h: Remove file.
* math/e_scalb.c (invalid_fn): Use rint functions instead of
__rint variants.
* math/e_scalbf.c (invalid_fn): Likewise.
* math/e_scalbl.c (invalid_fn): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r):
Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
Likewise.
* sysdeps/ieee754/k_standard.c (__kernel_standard): Likewise.
* sysdeps/ieee754/k_standardl.c (__kernel_standard_l): Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_llrint.c (__llrint): Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_llrintf.c (__llrintf): Likewise.
Similar to the changes that were made to call sqrt functions directly
in glibc, instead of __ieee754_sqrt variants, so that the compiler
could inline them automatically without needing special inline
definitions in lots of math_private.h headers, this patch makes libm
code call floor functions directly instead of __floor variants,
removing the inlines / macros for x86_64 (SSE4.1) and powerpc
(POWER5).
The redirection used to ensure that __ieee754_sqrt does still get
called when the compiler doesn't inline a built-in function expansion
is refactored so it can be applied to other functions; the refactoring
is arranged so it's not limited to unary functions either (it would be
reasonable to use this mechanism for copysign - removing the inline in
math_private_calls.h but also eliminating unnecessary local PLT entry
use in the cases (powerpc soft-float and e500v1, for IBM long double)
where copysign calls don't get inlined).
The point of this change is that more architectures can get floor
calls inlined where they weren't previously (AArch64, for example),
without needing special inline definitions in their math_private.h,
and existing such definitions in math_private.h headers can be
removed.
Note that it's possible that in some cases an inline may be used where
an IFUNC call was previously used - this is the case on x86_64, for
example. I think the direct calls to floor are still appropriate; if
there's any significant performance cost from inline SSE2 floor
instead of an IFUNC call ending up with SSE4.1 floor, that indicates
that either the function should be doing something else that's faster
than using floor at all, or it should itself have IFUNC variants, or
that the compiler choice of inlining for generic tuning should change
to allow for the possibility that, by not inlining, an SSE4.1 IFUNC
might be called at runtime - but not that glibc should avoid calling
floor internally. (After all, all the same considerations would apply
to any user program calling floor, where it might either be inlined or
left as an out-of-line call allowing for a possible IFUNC.)
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT):
New macro.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (floor): Likewise.
* sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_floorf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_floor.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise.
* sysdeps/ieee754/float128/s_floorf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_floorf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor):
Remove macro.
[_ARCH_PWR5X] (__floorf): Likewise.
* sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove
inline function.
[__SSE4_1__] (__floorf): Likewise.
* math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions
instead of __floor variants.
* math/w_lgamma_r_compat.c (__lgamma_r): Likewise.
* math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise.
* math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise.
* math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise.
* math/w_lgammal_r_compat.c (__lgammal_r): Likewise.
* math/w_tgamma_compat.c (__tgamma): Likewise.
* math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise.
* math/w_tgammaf_compat.c (__tgammaf): Likewise.
* math/w_tgammal_compat.c (__tgammal): Likewise.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl):
Likewise.
* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise.
* sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise.
* sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
Similar algorithm is used as in log: log2(2^k x) = k + log2(c) + log2(x/c)
where the last term is approximated by a polynomial of x/c - 1, the first
order coefficient is about 1/ln2 in this case.
There is separate code path when fma instruction is not available for
computing x/c - 1 precisely, for which the table size is doubled.
The worst case error is 0.547 ULP (0.55 without fma), the read only
global data size is 1168 bytes (2192 without fma) on aarch64. The
non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
log2 thruput: 2.00x in [0.01 11.1]
log2 latency: 2.04x in [0.01 11.1]
log2 thruput: 2.17x in [0.999 1.001]
log2 latency: 2.88x in [0.999 1.001]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA)
arm-linux-gnueabihf (!defined __FP_FAST_FMA)
x86_64-linux-gnu (!defined __FP_FAST_FMA)
powerpc64le-linxu-gnu (defined __FP_FAST_FMA)
targets.
* NEWS: Mention log2 improvements.
* math/Makefile (type-double-routines): Add e_log2_data.
* sysdeps/i386/fpu/e_log2_data.c: New file.
* sysdeps/ia64/fpu/e_log2_data.c: New file.
* sysdeps/ieee754/dbl-64/e_log2.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_log2_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (__log2_data): Add.
* sysdeps/ieee754/dbl-64/wordsize-64/e_log2.c: Remove.
* sysdeps/m68k/m680x0/fpu/e_log2_data.c: New file.
Optimized log using carefully generated lookup table with 1/c and log(c)
values for small intervalls around 1. The log(c) is very near a double
precision value, it has about 62 bits precision. The algorithm is
log(2^k x) = k log(2) + log(c) + log(x/c), where the last term is
approximated by a polynomial of x/c - 1. Near 1 a single polynomial of
x - 1 is used.
There is separate code path when fma instruction is not available for
computing x/c - 1 precisely, in which case the table size is doubled.
The code uses __builtin_fma under __FP_FAST_FMA to ensure it is inlined
as an instruction.
With the default configuration settings the worst case error is 0.519 ULP
(and 0.520 without fma), the rodata size is 2192 bytes (4240 without fma).
The non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
log thruput: 3.28x in [0.01 11.1]
log latency: 2.23x in [0.01 11.1]
log thruput: 1.56x in [0.999 1.001]
log latency: 1.57x in [0.999 1.001]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA)
arm-linux-gnueabihf (!defined __FP_FAST_FMA)
x86_64-linux-gnu (!defined __FP_FAST_FMA)
powerpc64le-linux-gnu (defined __FP_FAST_FMA)
targets.
* NEWS: Mention log improvement.
* math/Makefile (type-double-routines): Add e_log_data.
* sysdeps/i386/fpu/e_log_data.c: New file.
* sysdeps/ia64/fpu/e_log_data.c: New file.
* sysdeps/ieee754/dbl-64/e_log.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_log_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (__log_data): Add.
* sysdeps/ieee754/dbl-64/ulog.h: Remove.
* sysdeps/ieee754/dbl-64/ulog.tbl: Remove.
* sysdeps/m68k/m680x0/fpu/e_log_data.c: New file.
Optimized exp and exp2 implementations using a lookup table for
fractional powers of 2. There are several variants, see e_exp_data.c,
they can be selected by modifying math_config.h allowing different
tradeoffs.
The default selection should be acceptable as generic libm code.
Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on
aarch64 the rodata size is 2160 bytes, shared between exp and exp2.
On aarch64 .text + .rodata size decreased by 24912 bytes.
The non-nearest rounding error is less than 1 ULP even on targets
without efficient round implementation (although the error rate is
higher in that case). Targets with single instruction, rounding mode
independent, to nearest integer rounding and conversion can use them
by setting TOINT_INTRINSICS and adding the necessary code to their
math_private.h.
The __exp1 code uses the same algorithm, so the error bound of pow
increased a bit.
New double precision error handling code was added following the
style of the single precision error handling code.
Improvements on Cortex-A72 compared to current glibc master:
exp thruput: 1.61x in [-9.9 9.9]
exp latency: 1.53x in [-9.9 9.9]
exp thruput: 1.13x in [0.5 1]
exp latency: 1.30x in [0.5 1]
exp2 thruput: 2.03x in [-9.9 9.9]
exp2 latency: 1.64x in [-9.9 9.9]
For small (< 1) inputs the current exp code uses a separate algorithm
so the speed up there is less.
Was tested on
aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and
arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and
x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and
powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets,
only non-nearest rounding ulp errors increase and they are within
acceptable bounds (ulp updates are in separate patches).
* NEWS: Mention exp and exp2 improvements.
* math/Makefile (libm-support): Remove t_exp.
(type-double-routines): Add math_err and e_exp_data.
* sysdeps/aarch64/libm-test-ulps: Update.
* sysdeps/arm/libm-test-ulps: Update.
* sysdeps/i386/fpu/e_exp_data.c: New file.
* sysdeps/i386/fpu/math_err.c: New file.
* sysdeps/i386/fpu/t_exp.c: Remove.
* sysdeps/ia64/fpu/e_exp_data.c: New file.
* sysdeps/ia64/fpu/math_err.c: New file.
* sysdeps/ia64/fpu/t_exp.c: Remove.
* sysdeps/ieee754/dbl-64/e_exp.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_exp_data.c: New file.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound.
* sysdeps/ieee754/dbl-64/eexp.tbl: Remove.
* sysdeps/ieee754/dbl-64/math_config.h: New file.
* sysdeps/ieee754/dbl-64/math_err.c: New file.
* sysdeps/ieee754/dbl-64/t_exp.c: Remove.
* sysdeps/ieee754/dbl-64/t_exp2.h: Remove.
* sysdeps/ieee754/dbl-64/uexp.h: Remove.
* sysdeps/ieee754/dbl-64/uexp.tbl: Remove.
* sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file.
* sysdeps/m68k/m680x0/fpu/math_err.c: New file.
* sysdeps/m68k/m680x0/fpu/t_exp.c: Remove.
* sysdeps/powerpc/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
Continuing moving macros out of math-tests.h to smaller headers
following typo-proof conventions instead of using #ifndef, this patch
moves the EXCEPTION_TESTS_* macros for individual types out to their
own sysdeps header.
As with ROUNDING_TESTS_*, there is no need to define these macros if
FE_ALL_EXCEPT == 0 and the individual exception macros are undefined;
thus, math-tests-exceptions.h headers are only needed for soft-float
ARM and RISC-V, while the other cases that defined these macros do not
need to do so (and the associated math-tests.h headers are thus
removed without needing replacement by math-tests-exceptions.h
headers).
Tested with build-many-glibcs.py.
* sysdeps/generic/math-tests-exceptions.h: New file.
* sysdeps/generic/math-tests.h: Include <math-tests-exceptions.h>.
(EXCEPTION_TESTS_float): Do not define here.
(EXCEPTION_TESTS_double): Likewise.
(EXCEPTION_TESTS_long_double): Likewise.
(EXCEPTION_TESTS_float128): Likewise.
* sysdeps/arm/math-tests.h [__SOFTFP__] (EXCEPTION_TESTS_float):
Likewise.
[__SOFTFP__] (EXCEPTION_TESTS_double): Likewise.
[__SOFTFP__] (EXCEPTION_TESTS_long_double): Likewise.
* sysdeps/arm/nofpu/math-tests-exceptions.h: New file.
* sysdeps/m68k/coldfire/math-tests.h: Remove file.
* sysdeps/mips/math-tests.h: Likewise.
* sysdeps/nios2/math-tests.h: Likewise.
* sysdeps/riscv/math-tests.h [!__riscv_flen]
(EXCEPTION_TESTS_float): Do not define here.
[!__riscv_flen] (EXCEPTION_TESTS_double): Likewise.
[!__riscv_flen] (EXCEPTION_TESTS_long_double): Likewise.
* sysdeps/riscv/nofpu/math-tests-exceptions.h: New file.
Continuing moving macros out of math-tests.h to smaller headers
following typo-proof conventions instead of using #ifndef, this patch
moves the ROUNDING_TESTS_* macros for individual types out to their
own sysdeps header.
In the soft-float case where FE_TONEAREST is the only rounding mode
macro defined, there is no need to define ROUNDING_TESTS_*; it is only
necessary when rounding modes macros are defined that may not be
supported at runtime. Thus, the ROUNDING_TESTS_* definitions for some
configurations are just removed, not moved to new
math-tests-rounding.h headers; the only architectures needing
math-tests-rounding.h are those where the macros are defined in
bits/fenv.h because of the possibility of a soft-float compilation
using a hard-float glibc with the same ABI (i.e., ARM and RISC-V).
The test-*-vlen*.h headers, by using #undef, do not yet follow
typo-proof conventions (but they no longer implicitly rely on being
included before math-tests.h, and this area can always be cleaned up
further in future).
Tested with build-many-glibcs.py.
* sysdeps/generic/math-tests-rounding.h: New file.
* sysdeps/generic/math-tests.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Do not define here.
(ROUNDING_TESTS_double): Likewise.
(ROUNDING_TESTS_long_double): Likewise.
(ROUNDING_TESTS_float128): Likewise.
* math/test-double-vlen2.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Undefine before defining.
* math/test-double-vlen4.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Undefine before defining.
* math/test-double-vlen8.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Undefine before defining.
* math/test-float-vlen16.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Undefine before defining.
* math/test-float-vlen4.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Undefine before defining.
* math/test-float-vlen8.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Undefine before defining.
* sysdeps/arm/nofpu/math-tests-rounding.h: New file.
* sysdeps/arm/math-tests.h [__SOFTFP__] (ROUNDING_TESTS_float): Do
not define here.
[__SOFTFP__] (ROUNDING_TESTS_double): Likewise.
[__SOFTFP__] (ROUNDING_TESTS_long_double): Likewise.
* sysdeps/riscv/nofpu/math-tests-rounding.h: New file.
* sysdeps/riscv/math-tests.h [!__riscv_flen]
(ROUNDING_TESTS_float): Do not define here.
[!__riscv_flen] (ROUNDING_TESTS_double): Likewise.
[!__risv_flen] (ROUNDING_TESTS_long_double): Likewise.
* sysdeps/m68k/coldfire/math-tests.h [!__mcffpu__]
(ROUNDING_TESTS_float): Likewise.
[!__mcffpu__] (ROUNDING_TESTS_double): Likewise.
[!__mcffpu__] (ROUNDING_TESTS_long_double): Likewise.
* sysdeps/mips/math-tests.h [__mips_soft_float]
(ROUNDING_TESTS_float): Likewise.
[__mips_soft_float] (ROUNDING_TESTS_double): Likewise.
[__mips_soft_float] (ROUNDING_TESTS_long_double): Likewise.
* sysdeps/nios2/math-tests.h (ROUNDING_TESTS_float): Likewise.
(ROUNDING_TESTS_double): Likewise.
(ROUNDING_TESTS_long_double): Likewise.
This patch is a complete rewrite of sincosf. The new version is
significantly faster, as well as simple and accurate.
The worst-case ULP is 0.5607, maximum relative error is 0.5303 * 2^-23 over
all 4 billion inputs. In non-nearest rounding modes the error is 1ULP.
The algorithm uses 3 main cases: small inputs which don't need argument
reduction, small inputs which need a simple range reduction and large inputs
requiring complex range reduction. The code uses approximate integer
comparisons to quickly decide between these cases.
The small range reducer uses a single reduction step to handle values up to
120.0. It is fastest on targets which support inlined round instructions.
The large range reducer uses integer arithmetic for simplicity. It does a
32x96 bit multiply to compute a 64-bit modulo result. This is more than
accurate enough to handle the worst-case cancellation for values close to
an integer multiple of PI/4. It could be further optimized, however it is
already much faster than necessary.
sincosf throughput gains on Cortex-A72:
* |x| < 0x1p-12 : 1.6x
* |x| < M_PI_4 : 1.7x
* |x| < 2 * M_PI: 1.5x
* |x| < 120.0 : 1.8x
* |x| < Inf : 2.3x
* math/Makefile: Add s_sincosf_data.c.
* sysdeps/ia64/fpu/s_sincosf_data.c: New file.
* sysdeps/ieee754/flt-32/s_sincosf.h (abstop12): Add new function.
(sincosf_poly): Likewise.
(reduce_small): Likewise.
(reduce_large): Likewise.
* sysdeps/ieee754/flt-32/s_sincosf.c (sincosf): Rewrite.
* sysdeps/ieee754/flt-32/s_sincosf_data.c: New file with sincosf data.
* sysdeps/m68k/m680x0/fpu/s_sincosf_data.c: New file.
* sysdeps/x86_64/fpu/s_sincosf_data.c: New file.
Commit 5e79e0292b broke m68k after
s_significand.c became available in the build directory. All m68k
implementations of log1p and significand were including s_significand.c
and stopped working after the inclusion of the the auto-generated file.
This patch reorganizes the implementation of log1p and significand for
m680x0 in order to avoid hitting this problem.
* sysdeps/m68k/m680x0/fpu/s_log1p.c: Set as the generic file for
all log1p and significand functions on m680x0.
* sysdeps/m68k/m680x0/fpu/s_log1pf.c: Include s_log1p.c instead
of s_significand.c..
* sysdeps/m68k/m680x0/fpu/s_log1pl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significandf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significandl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significand.c: Move all the code to
s_log1p.c and include it..
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
_init and _fini are special functions provided by glibc for linker to
define DT_INIT and DT_FINI in executable and shared library. They
should never be put in dynamic symbol table. This patch marks them as
hidden to remove them from dynamic symbol table.
Tested with build-many-glibcs.py.
[BZ #23145]
* elf/Makefile (tests-special): Add $(objpfx)check-initfini.out.
($(all-built-dso:=.dynsym): New target.
(common-generated): Add $(all-built-dso:$(common-objpfx)%=%.dynsym).
($(objpfx)check-initfini.out): New target.
(generated): Add check-initfini.out.
* scripts/check-initfini.awk: New file.
* sysdeps/aarch64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/alpha/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/arm/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/hppa/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/i386/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/ia64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/m68k/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/microblaze/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/nios2/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sh/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sparc/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/x86_64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
This patch continues the math_private.h cleanup by stopping
math_private.h from including math-barriers.h and making the users of
the barrier macros include the latter header directly. No attempt is
made to remove any math_private.h includes that are now unused, except
in strtod_l.c where that is done to avoid line number changes in
assertions, so that installed stripped shared libraries can be
compared before and after the patch. (I think the floating-point
environment support in math_private.h should also move out - some
architectures already have fenv_private.h as an architecture-internal
header included from their math_private.h - and after moving that out
might be a better time to identify unused math_private.h includes.)
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.
* sysdeps/generic/math_private.h: Do not include
<math-barriers.h>.
* stdlib/strtod_l.c: Include <math-barriers.h> instead of
<math_private.h>.
* math/fromfp.h: Include <math-barriers.h>.
* math/math-narrow.h: Likewise.
* math/s_nextafter.c: Likewise.
* math/s_nexttowardf.c: Likewise.
* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
* sysdeps/i386/fpu/s_nextafterl.c: Likewise.
* sysdeps/i386/fpu/s_nexttoward.c: Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atan2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atanh.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise.
* sysdeps/ieee754/dbl-64/s_expm1.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_log1p.c: Likewise.
* sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/flt-32/e_atanhf.c: Likewise.
* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
* sysdeps/ieee754/flt-32/s_expm1f.c: Likewise.
* sysdeps/ieee754/flt-32/s_log1pf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_asinl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_powl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_atanhl.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_j0l.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Likewise.
This patch continues cleaning up math_private.h by moving the
math_opt_barrier and math_force_eval macros to a separate header
math-barriers.h.
At present, those macros are inside a "#ifndef math_opt_barrier" in
math_private.h to allow architectures to override them and then use
a separate math-barriers.h header, no such #ifndef or #include_next is
needed; architectures just have their own alternative version of
math-barriers.h when providing their own optimized versions that avoid
going through memory unnecessarily. The generic math-barriers.h has a
comment added to document these two macros.
In this patch, math_private.h is made to #include <math-barriers.h>,
so files using these macros do not need updating yet. That is because
of uses of math_force_eval in math_check_force_underflow and
math_check_force_underflow_nonneg, which are still defined in
math_private.h. Once those are moved out to a separate header, that
separate header can be made to include <math-barriers.h>, as can the
other files directly using these barrier macros, and then the include
of <math-barriers.h> from math_private.h can be removed.
Tested for x86_64 and x86. Also tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by this patch.
* sysdeps/generic/math-barriers.h: New file.
* sysdeps/generic/math_private.h [!math_opt_barrier]
(math_opt_barrier): Move to math-barriers.h.
[!math_opt_barrier] (math_force_eval): Likewise.
* sysdeps/aarch64/fpu/math-barriers.h: New file.
* sysdeps/aarch64/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/alpha/fpu/math-barriers.h: New file.
* sysdeps/alpha/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/x86/fpu/math-barriers.h: New file.
* sysdeps/i386/fpu/fenv_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/m68k/m680x0/fpu/math_private.h: Move to....
* sysdeps/m68k/m680x0/fpu/math-barriers.h: ... here. Adjust
multiple-include guard for rename.
* sysdeps/powerpc/fpu/math-barriers.h: New file.
* sysdeps/powerpc/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.