When the signs differ, the precision of the conversion sometimes
drops below 106 bits. This strategy is identical to the
hexadecimal variant.
I've refactored tst-sprintf3 to enable testing a value with more
than 30 significant digits in order to demonstrate this failure
and its solution.
Additionally, this implicitly fixes a typo in the shift
quantities when subtracting from the high mantissa to compute
the difference.
The ldbl-128ibm implementation of nearbyintl uses logic that only
works in round-to-nearest mode. This contrasts with rintl, which
works in all rounding modes.
Now, arguably nearbyintl could simply be aliased to rintl, given that
spurious "inexact" is generally allowed for ldbl-128ibm, even for the
underlying arithmetic operations. But given that the only point of
nearbyintl is to avoid "inexact", this patch follows the more
conservative approach of adding conditionals to the rintl
implementation to make it suitable for use to implement nearbyintl,
then builds it for nearbyintl with USE_AS_NEARBYINTL defined. The
test test-nearbyint-except-2 shows up issues when traps on "inexact"
are enabled, which turn out to be problems with the powerpc
fenv_private.h implementation (two functions that should disable
exception traps potentially failing to do so in some cases); this
patch duly fixes that as well (I don't see any other existing cases
where this would be user-visible; there isn't much use of *_NOEX,
*hold* etc. in libm that requires exceptions to be discarded and not
trapped on).
Tested for powerpc.
[BZ #19790]
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c [USE_AS_NEARBYINTL]
(rintl): Define as macro.
[USE_AS_NEARBYINTL] (__rintl): Likewise.
(__rintl) [USE_AS_NEARBYINTL]: Use SET_RESTORE_ROUND_NOEX instead
of fesetround. Ensure results are evaluated before end of scope.
* sysdeps/ieee754/ldbl-128ibm/s_nearbyintl.c: Define
USE_AS_NEARBYINTL and include s_rintl.c.
* sysdeps/powerpc/fpu/fenv_private.h (libc_feholdsetround_ppc):
Disable exception traps in new environment.
(libc_feholdsetround_ppc_ctx): Likewise.
The ldbl-128ibm implementation of remainderl has logic resulting in
incorrect tests for equality of the absolute values of the arguments
in the case of zero low parts. If the low parts are both zero but
with different signs, this can wrongly cause equal arguments to be
treated as different, resulting in turn in incorrect signs of zero
result in nondefault rounding modes arising from the subtractions done
when the arguments are not equal.
This patch fixes the logic to convert -0 low parts into +0 before the
comparison (remquo already has separate logic to deal with signs of
zero results, so doesn't need such a change). Tests are added for
remainderl and remquol similar to that for fmodl, and based on a
refactoring of it, since the bug depends on low parts which should not
be relied upon in tests not setting the representation explicitly
(although in fact the bug shows up in test-ldouble with current GCC).
Tested for powerpc.
[BZ #19677]
* sysdeps/ieee754/ldbl-128ibm/e_remainderl.c
(__ieee754_remainderl): Put zero low parts in canonical form.
* sysdeps/ieee754/ldbl-128ibm/test-fmodrem-ldbl-128ibm.c: New
file. Based on
sysdeps/ieee754/ldbl-128ibm/test-fmodl-ldbl-128ibm.c.
* sysdeps/ieee754/ldbl-128ibm/test-fmodl-ldbl-128ibm.c: Replace
with wrapper round test-fmodrem-ldbl-128ibm.c.
* sysdeps/ieee754/ldbl-128ibm/test-remainderl-ldbl-128ibm.c: New
file.
* sysdeps/ieee754/ldbl-128ibm/test-remquol-ldbl-128ibm.c:
Likewise.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Add
test-remainderl-ldbl-128ibm and test-remquol-ldbl-128ibm.
The ldbl-128ibm implementation of nextafterl / nexttowardl returns -0
in FE_DOWNWARD mode when taking the next value below the least
positive subnormal, when it should return +0. This patch fixes it to
check explicitly for this case.
Tested for powerpc.
[BZ #19678]
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl):
Ensure +0.0 is returned when taking the next value below the least
positive value.
The ldbl-128ibm implementation of powl has some problems in the case
of overflow or underflow, which are mainly visible in non-default
rounding modes.
* When overflow or underflow is detected early, the correct sign of an
overflowing or underflowing result is not allowed for. This is
mostly hidden in the default rounding mode by the errno-setting
wrappers recomputing the result (except in non-default
error-handling modes such as -lieee), but visible in other rounding
modes where a result that is not zero or infinity causes the
wrappers not to do the recomputation.
* The final scaling is done before the sign is incorporated in the
result, but should be done afterwards for correct overflowing and
underflowing results in directed rounding modes.
This patch fixes those problems. Tested for powerpc.
[BZ #19674]
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Include
sign in overflowing and underflowing results when overflow or
underflow is detected early. Include sign in result before rather
than after scaling.
The ldbl-128ibm implementations of remainderl and remquol have logic
resulting in incorrect tests for equality of the absolute values of
the arguments. Equality is tested based on the integer
representations of the high and low parts, with the sign bit masked
off the high part - but when this changes the sign of the high part,
the sign of the low part needs to be changed as well, and failure to
do this means arguments are wrongly treated as equal when they are
not.
This patch fixes the logic to adjust signs of low parts as needed.
Tested for powerpc.
[BZ #19603]
* sysdeps/ieee754/ldbl-128ibm/e_remainderl.c
(__ieee754_remainderl): Adjust sign of integer version of low part
when taking absolute value of high part.
* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
* math/libm-test.inc (remainder_test_data): Add another test.
(remquo_test_data): Likewise.
The ldbl-128ibm implementation of fmodl has logic to detect when the
first argument has absolute value less than or equal to the second.
This logic is only correct for nonzero low parts; if the high parts
are equal and the low parts are zero, then the signs of the low parts
(which have no semantic effect on the value of the long double number)
can result in equal values being wrongly treated as unequal, and an
incorrect result being returned from fmodl. This patch fixes this by
checking for the case of zero low parts.
Although this does show up in tests from libm-test.inc (both tests of
fmodl, and, indirectly, of remainderl / dreml), the dependence on
non-semantic zero low parts means that test shouldn't be expected to
reproduce it reliably; thus, this patch adds a standalone test that
sets up affected values using unions.
Tested for powerpc.
[BZ #19602]
* sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Handle
equal high parts and both low parts zero specially.
* sysdeps/ieee754/ldbl-128ibm/test-fmodl-ldbl-128ibm.c: New test.
* sysdeps/ieee754/ldbl-128ibm/Makefile [$(subdir) = math] (tests):
Add test-fmodl-ldbl-128ibm.
The ldbl-128ibm implementation of fmodl has completely bogus logic for
subnormal results (in this context, that means results for which the
result is in the subnormal range for double, not results with absolute
value below LDBL_MIN), based on code used for ldbl-128 that is correct
in that case but incorrect in the ldbl-128ibm use. This patch fixes
it to convert the mantissa into the correct form expected by
ldbl_insert_mantissa, removing the other cases of the code that were
incorrect and in one case unreachable for ldbl-128ibm. A correct
exponent value is then passed to ldbl_insert_mantissa to reflect the
shifted result.
Tested for powerpc.
[BZ #19595]
* sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Use
common logic for all cases of shifting subnormal results. Do not
insert sign bit in shifted mantissa. Always pass -1023 as biased
exponent to ldbl_insert_mantissa in subnormal case.
The ldbl-128ibm implementation of roundl is only correct in
round-to-nearest mode (in other modes, there are incorrect results and
overflow exceptions in some cases). This patch reimplements it along
the lines used for floorl, ceill and truncl, using __round on the high
part, and on the low part if the high part is an integer, and then
adjusting in the cases where this is incorrect.
Tested for powerpc.
[BZ #19594]
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c (__roundl): Use __round
on high and low parts then adjust result and use
ldbl_canonicalize_int if needed.
The ldbl-128ibm implementation of truncl is only correct in
round-to-nearest mode (in other modes, there are incorrect results and
overflow exceptions in some cases). It is also unnecessarily
complicated, rounding both high and low parts to the nearest integer
and then adjusting for the semantics of trunc, when it seems more
natural to take the truncation of the high part (__trunc optimized
inline versions can be used), and the floor or ceiling of the low part
(depending on the sign of the high part) if the high part is an
integer, as was done for floorl and ceill. This patch makes it use
that simpler approach.
Tested for powerpc.
[BZ #19593]
* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Use __trunc
on high part and __floor or __ceil on low part then use
ldbl_canonicalize_int if needed.
The ldbl-128ibm implementation of ceill is only correct in
round-to-nearest mode (in other modes, there are incorrect results and
overflow exceptions in some cases). It is also unnecessarily
complicated, rounding both high and low parts to the nearest integer
and then adjusting for the semantics of ceil, when it seems more
natural to take the ceiling of the high part (__ceil optimized inline
versions can be used), and that of the low part if the high part is an
integer, as was done for floorl. This patch makes it use that simpler
approach.
Tested for powerpc.
[BZ #19592]
* sysdeps/ieee754/ldbl-128ibm/s_ceill.c (__ceill): Use __ceil on
high and low parts then use ldbl_canonicalize_int if needed.
The ldbl-128ibm implementation of floorl is only correct in
round-to-nearest mode (in other modes, there are incorrect results and
overflow exceptions in some cases going beyond the incorrect signs of
zero results noted in bug 17899). It is also unnecessarily
complicated, rounding both high and low parts to the nearest integer
and then adjusting for the semantics of floor, when it seems more
natural to take the floor of the high part (__floor optimized inline
versions can be used), and that of the low part if the high part is an
integer. This patch makes it use that simpler approach, with a
canonicalization that works in all rounding modes (given that the only
way the result can be noncanonical is if taking the floor of a
negative noninteger low part increased its exponent).
Tested for powerpc, where over a thousand failures are removed from
test-ldouble.out (floorl problems affect many powl tests).
[BZ #17899]
* sysdeps/ieee754/ldbl-128ibm/math_ldbl.h (ldbl_canonicalize_int):
New function.
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c (__floorl): Use __floor
on high and low parts then use ldbl_canonicalize_int if needed.
The changes to restrict implementation-namespace symbol aliases such
as __finitel to compat symbols used code for __finitel in libm
analogous to that for __finitel in libc. However, the versions for
the two symbols are actually different, GLIBC_2.0 in libc and
GLIBC_2.1 in libm. This patch fixes the handling of the libm compat
symbol.
Tested for mips (o32), where it fixes an ABI test failure.
* sysdeps/ieee754/dbl-64/s_finite.c
[NO_LONG_DOUBLE && LDBL_CLASSIFY_COMPAT] (__finitel): Define
compat symbol at version GLIBC_2_1 and use GLIBC_2_1 in
SHLIB_COMPAT condition for libm, not GLIBC_2_0.
* sysdeps/ieee754/dbl-64/wordsize-64/s_finite.c
[NO_LONG_DOUBLE && LDBL_CLASSIFY_COMPAT] (__finitel): Likewise.
I get some math test-failures on s390 for float/double/ldouble for
various lrint/lround functions like:
lrint (0x1p64): Exception "Inexact" set
lrint (-0x1p64): Exception "Inexact" set
lround (0x1p64): Exception "Inexact" set
lround (-0x1p64): Exception "Inexact" set
...
GCC emits "convert to fixed" instructions for casting floating point
values to integer values. These instructions raise invalid and inexact
exceptions if the floating point value exceeds the integer type ranges.
This patch enables the various FIX_DBL_LONG_CONVERT_OVERFLOW macros in
order to avoid a cast from floating point to integer type and raise the
invalid exception with feraiseexcept.
The ldbl-128 rint/round functions are now using the same logic.
ChangeLog:
[BZ #19486]
* sysdeps/s390/fix-fp-int-convert-overflow.h: New File.
* sysdeps/generic/fix-fp-int-convert-overflow.h
(FIX_LDBL_LONG_CONVERT_OVERFLOW,
FIX_LDBL_LLONG_CONVERT_OVERFLOW): New define.
* sysdeps/arm/fix-fp-int-convert-overflow.h: Likewise.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h:
Likewise.
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl):
Avoid conversions to long int where inexact exceptions
could be raised.
* sysdeps/ieee754/ldbl-128/s_lroundl.c (__lroundl):
Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c (__llrintl):
Avoid conversions to long long int where inexact exceptions
could be raised.
* sysdeps/ieee754/ldbl-128/s_llroundl.c (__llroundl):
Likewise.
When looking at the code generated for pow() on ppc64 I noticed quite
a few sign extensions. Making the array indices unsigned reduces the
number of sign extensions from 24 to 7.
Tested for powerpc64le and x86_64.
Like the previous change, exploit the fact that computation for sin
and cos is identical except that it is apart by a quadrant. Also
remove csloww, csloww1 and csloww2 since they can easily be expressed
in terms of sloww, sloww1 and sloww2.
The sin and cos computation for this range of input is identical
except for a difference in quadrants by 1. Exploit that fact and the
common argument reduction to reduce computations for sincos.
Range reduction needs to be done only once for sin and cos, so copy
over all of the relevant functions (__sin, __cos, reduce_and_compute)
and consolidate common code.
The ldbl-128ibm implementation of logl is inaccurate for arguments
near 1, because when deciding whether to bypass a series expansion for
log(1+z), where z = x-1, it compares the square of z rather than z
itself with an epsilon value. This patch fixes that comparison, so
eliminating the test failures for inaccuracy of logl in such cases.
Tested for powerpc.
[BZ #19351]
* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): When
expanding log(1+z), compare z rather than its square with epsilon
to determine when to avoid evaluating the expansion.
The ldbl-128ibm implementation of sinhl uses a slightly too small
overflow threshold (similar to bug 16407 for coshl). This patch fixes
it to use a safe threshold (so that values whose high part is above
the value compared with definitely result in an overflow in all
rounding modes).
Tested for powerpc.
[BZ #19350]
* sysdeps/ieee754/ldbl-128ibm/e_sinhl.c (__ieee754_sinhl):
Increase overflow threshold.
The ldbl-128ibm implementation of tanhl is inaccurate for small
arguments, because it returns x*(1+x) (maybe in an attempt to raise
"inexact") when x itself would be the accurate return value but
multiplying by 1+x introduces large errors. This patch fixes it to
return x in that case (when the mathematical result is x plus a
negligible remainder on the order of x^3) to avoid those errors.
Tested for powerpc.
[BZ #19349]
* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Return argument
when small.
If a platform does not define "long-double-fcts = yes" in its
Makefiles and it does define __NO_LONG_DOUBLE_MATH in its installed
headers, it will currently create exported symbols for __finitel,
__isinfl, and __isnanl that can't be reached from userspace by
correct use of the finite(), isinf(), or isnan() macros in <math.h>.
To avoid this situation, by default for such platforms we now no
longer export these symbols, thus causing appropriate link-time
errors. However, for platforms that previously exported these
symbols, we continue to do so as compat symbols; this is enabled
by adding LDBL_CLASSIFY_COMPAT to math_private.h for the platform.
For tile, remove the now-unnecessary exports of those functions from
libc and libm.
Various sysdeps/ieee754/dbl-64 functions use double constants defined
using a union between a double and two ints, with separate big-endian
and little-endian definitions of the constants.
With modern C, this is unnecessary complication; hex float constants
(or __builtin_inf etc.) suffice to specify the exact value desired,
and so can avoid separate versions for each endianness. Having this
complication also complicates cleanups such as removing slow paths
from these library functions, as they need to make sure to remove both
copies of variables that are no longer used after such a cleanup (and
in at least one case, proper removal of a slow path will also involve
removing slow-path-only values from the middle of an array - an array
with both big-endian and little-endian copies - and adjusting other
references to that array).
So it makes sense to clean up the code to define these constants using
hex floats and so eliminate the endianness conditional. This patch
does so in the case of sqrt, where the two constants are such that it
makes sense just to put them directly in the code using them and
eliminate the names for them altogether.
Tested for arm (the code generated for sqrt does change, though not in
any significant way).
* sysdeps/ieee754/dbl-64/e_sqrt.c: Do not include uroot.h.
(__ieee754_sqrt): Use hex float constants instead of tm256.x and
t512.x.
* sysdeps/ieee754/dbl-64/uroot.h: Remove file.
The nan* functions handle their string argument by constructing a
NAN(...) string on the stack as a VLA and passing it to strtod
functions.
This approach has problems discussed in bug 16961 and bug 16962: the
stack usage is unbounded, and it gives incorrect results in certain
cases where the argument is not a valid n-char-sequence.
The natural fix for both issues is to refactor the NaN payload parsing
out of strtod into a separate function that the nan* functions can
call directly, so that no temporary string needs constructing on the
stack at all. This patch does that refactoring in preparation for
fixing those bugs (but without actually using the new functions from
nan* - which will also require exporting them from libc at version
GLIBC_PRIVATE). This patch is not intended to change any user-visible
behavior, so no tests are added (fixes for the above bugs will of
course add tests for them).
This patch builds on my recent fixes for strtol and strtod issues in
Turkish locales. Given those fixes, the parsing of NaN payloads is
locale-independent; thus, the new functions do not need to take a
locale_t argument.
Tested for x86_64, x86, mips64 and powerpc.
* stdlib/strtod_nan.c: New file.
* stdlib/strtod_nan_double.h: Likewise.
* stdlib/strtod_nan_float.h: Likewise.
* stdlib/strtod_nan_main.c: Likewise.
* stdlib/strtod_nan_narrow.h: Likewise.
* stdlib/strtod_nan_wide.h: Likewise.
* stdlib/strtof_nan.c: Likewise.
* stdlib/strtold_nan.c: Likewise.
* sysdeps/ieee754/ldbl-128/strtod_nan_ldouble.h: Likewise.
* sysdeps/ieee754/ldbl-128ibm/strtod_nan_ldouble.h: Likewise.
* sysdeps/ieee754/ldbl-96/strtod_nan_ldouble.h: Likewise.
* wcsmbs/wcstod_nan.c: Likewise.
* wcsmbs/wcstof_nan.c: Likewise.
* wcsmbs/wcstold_nan.c: Likewise.
* stdlib/Makefile (routines): Add strtof_nan, strtod_nan and
strtold_nan.
* wcsmbs/Makefile (routines): Add wcstod_nan, wcstold_nan and
wcstof_nan.
* include/stdlib.h (__strtof_nan): Declare and use
libc_hidden_proto.
(__strtod_nan): Likewise.
(__strtold_nan): Likewise.
(__wcstof_nan): Likewise.
(__wcstod_nan): Likewise.
(__wcstold_nan): Likewise.
* include/wchar.h (____wcstoull_l_internal): Declare.
* stdlib/strtod_l.c: Do not include <ieee754.h>.
(____strtoull_l_internal): Remove declaration.
(STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
(STRTOULL): Likewise.
(____STRTOF_INTERNAL): Use STRTOF_NAN to parse NaN payload.
* stdlib/strtof_l.c (____strtoull_l_internal): Remove declaration.
(STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-128/strtold_l.c (STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-128ibm/strtold_l.c (STRTOF_NAN): Define
macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-64-128/strtold_l.c (STRTOF_NAN): Define
macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-96/strtold_l.c (STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* wcsmbs/wcstod_l.c (____wcstoull_l_internal): Remove declaration.
* wcsmbs/wcstof_l.c (____wcstoull_l_internal): Likewise.
* wcsmbs/wcstold_l.c (____wcstoull_l_internal): Likewise.
The lgamma (and likewise lgammaf, lgammal) function wrongly sets the
signgam variable even when building for strict ISO C conformance
(-std=c99 / -std=c11), although the user may define such a variable
and it's only in the implementation namespace for POSIX with XSI
extensions enabled.
Following discussions starting at
<https://sourceware.org/ml/libc-alpha/2013-04/msg00767.html> and
<https://sourceware.org/ml/libc-alpha/2015-10/msg00844.html>, it seems
that the safest approach for fixing this particular issue is for
signgam to become a weak alias for a newly exported symbol __signgam,
with the library functions only setting __signgam, at which point
static linker magic will preserve the alias for newly linked binaries
that refer to the library's signgam rather than defining their own,
while breaking the alias for programs that define their own signgam,
with new symbol versions for lgamma functions and with compat symbols
for existing binaries that set both signgam and __signgam.
This patch implements that approach for the fix. signgam is made into
a weak alias. The four symbols __signgam, lgamma, lgammaf, lgammal
get new symbol versions at version GLIBC_2.23, with the existing
versions of lgamma, lgammaf and lgammal becoming compat symbols.
When the compat versions are built, gamma, gammaf and gammal are
aliases for the compat versions (i.e. always set signgam); this is OK
as they are not ISO C functions, and avoids adding new symbol versions
for them unnecessarily. When the compat versions are not built
(i.e. for static linking and for future glibc ports), gamma, gammaf
and gammal are aliases for the new versions that set __signgam. The
ldbl-opt versions are updated accordingly.
The lgamma wrappers are adjusted so that the same source files,
included from different files with different definitions of
USE_AS_COMPAT, can build either the new versions or the compat
versions. Similar changes are made to the ia64 versions (untested).
Tests are added that the lgamma functions do not interfere with a user
variable called signgam for ISO C, with various choices for the size
of that variable, whether it is initialized, and for static and
dynamic linking. The conformtest whitelist entry is removed as well.
Tested for x86_64, x86, mips64 and powerpc, including looking at
objdump --dynamic-syms output to make sure the expected sets of
symbols were aliases. Also spot-tested that a binary built with old
glibc works properly (i.e. gets signgam set) when run with new glibc.
[BZ #15421]
* sysdeps/ieee754/s_signgam.c (signgam): Rename to __signgam,
initialize with 0 and define as weak alias of __signgam.
* include/math.h [!_ISOMAC] (__signgam): Declare.
* math/Makefile (libm-calls): Add w_lgamma_compat.
(tests): Add test-signgam-uchar, test-signgam-uchar-init,
test-signgam-uint, test-signgam-uint-init, test-signgam-ullong and
test-signgam-ullong-init.
(tests-static): Add test-signgam-uchar-static,
test-signgam-uchar-init-static, test-signgam-uint-static,
test-signgam-uint-init-static, test-signgam-ullong-static and
test-signgam-ullong-init-static.
(CFLAGS-test-signgam-uchar.c): New variable.
(CFLAGS-test-signgam-uchar-init.c): Likewise.
(CFLAGS-test-signgam-uchar-static.c): Likewise.
(CFLAGS-test-signgam-uchar-init-static.c): Likewise.
(CFLAGS-test-signgam-uint.c): Likewise.
(CFLAGS-test-signgam-uint-init.c): Likewise.
(CFLAGS-test-signgam-uint-static.c): Likewise.
(CFLAGS-test-signgam-uint-init-static.c): Likewise.
(CFLAGS-test-signgam-ullong.c): Likewise.
(CFLAGS-test-signgam-ullong-init.c): Likewise.
(CFLAGS-test-signgam-ullong-static.c): Likewise.
(CFLAGS-test-signgam-ullong-init-static.c): Likewise.
* math/Versions (libm): Add GLIBC_2.23.
* math/lgamma-compat.h: New file.
* math/test-signgam-main.c: Likewise.
* math/test-signgam-uchar-init-static.c: Likewise.
* math/test-signgam-uchar-init.c: Likewise.
* math/test-signgam-uchar-static.c: Likewise.
* math/test-signgam-uchar.c: Likewise.
* math/test-signgam-uint-init-static.c: Likewise.
* math/test-signgam-uint-init.c: Likewise.
* math/test-signgam-uint-static.c: Likewise.
* math/test-signgam-uint.c: Likewise.
* math/test-signgam-ullong-init-static.c: Likewise.
* math/test-signgam-ullong-init.c: Likewise.
* math/test-signgam-ullong-static.c: Likewise.
* math/test-signgam-ullong.c: Likewise.
* math/w_lgamma.c: Rename to w_lgamma_main.c and replace by
wrapper of w_lgamma_main.c.
* math/w_lgamma_compat.c: New file.
* math/w_lgamma_compatf.c: Likewise.
* math/w_lgamma_compatl.c: Likewise.
* math/w_lgamma_main.c: New file. Based on w_lgamma.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgamma): Change to LGFUNC (__lgamma). Use CALL_LGAMMA.
* math/w_lgammaf.c: Rename to w_lgammaf_main.c and replace by
wrapper of w_lgammaf_main.c.
* math/w_lgammaf_main.c: New file. Based on w_lgammaf.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgammaf): Change to LGFUNC (__lgammaf). Use CALL_LGAMMA.
* math/w_lgammal.c: Rename to w_lgammal_main.c and replace by
wrapper of w_lgammal_main.c.
* math/w_lgammal_main.c: New file. Based on w_lgammal.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgammal): Change to LGFUNC (__lgammal). Use CALL_LGAMMA.
* sysdeps/ia64/fpu/lgamma-compat.h: New file.
* sysdeps/ia64/fpu/w_lgamma.c: Move to ....
* sysdeps/ia64/fpu/w_lgamma_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgamma): Change to LGFUNC (lgamma). Use CALL_LGAMMA.
(__ieee754_gamma): Define as alias.
* sysdeps/ia64/fpu/w_lgammaf.c: Move to ....
* sysdeps/ia64/fpu/w_lgammaf_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgammaf): Change to LGFUNC (lgammaf). Use CALL_LGAMMA.
(__ieee754_gammaf): Define as alias.
* sysdeps/ia64/fpu/w_lgammal.c: Move to ....
* sysdeps/ia64/fpu/w_lgammal_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgammal): Change to LGFUNC (lgammal). Use CALL_LGAMMA.
(__ieee754_gammal): Define as alias.
* sysdeps/ieee754/ldbl-opt/w_lgamma.c: Move to ....
* sysdeps/ieee754/ldbl-opt/w_lgamma_compat.c: ...here. Include
<math/w_lgamma_compat.c>.
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (__lgammal_dbl_compat):
Define as alias of __lgamma_compat and use in defining lgammal.
* sysdeps/ieee754/ldbl-opt/w_lgammal.c: Move to ....
* sysdeps/ieee754/ldbl-opt/w_lgamma_compatl.c: ...here. Include
<math/lgamma-compat.h> and <math/w_lgamma_compatl.c>.
(USE_AS_COMPAT): New macro.
(LGAMMA_OLD_VER): Undefine and redefine.
(lgammal): Do not define here.
(gammal): Only define here if [GAMMA_ALIAS].
* conform/linknamespace.pl (@whitelist): Remove signgam.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
Kind of hokey, but errno.h drags in misc/sys/param.h which
defines MIN/MAX causing an error. Include system headers
first to grab MIN/MAX definition in param.h, and define
HAVE_ALLOCA to preserve existing behavior.
* sysdeps/ieee754/ldbl-128ibm/mpn2ldl.c: Include gmp headers
after system headers to prevent MIN/MAX redefinition. Define
HAVE_ALLOCA to preserve builtin alloca usage.
Include the __sin and __cos functions as local static copies to allow
deper optimization of the functions. This change shows an improvement
of about 17% in the min case and 12.5% in the mean case for the sincos
microbenchmark on x86_64.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin)[IN_SINCOS]: Mark function
static and don't set or restore rounding.
(__cos)[IN_SINCOS]: Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c: Include s_sin.c.
(__sincos): Set and restore rounding mode. Remove check for infinite
or NaN input.
For ldbl-128ibm, if the result of strtold overflows in the final
conversion from MPN to IBM long double (because the exponent for a
106-bit IEEE result is 1023 but the high part would end up as
0x1p1024, which overflows), that conversion code fails to handle this
and produces an invalid long double value (high part infinite, low
part not zero) without raising exceptions or setting errno. This
patch adds an explicit check for this case to ensure an appropriate
result is returned in a way that ensures the right exceptions are
raised, with errno set.
Tested for powerpc.
[BZ #14551]
* sysdeps/ieee754/ldbl-128ibm/mpn2ldbl.c: Include <errno.h>.
(__mpn_construct_long_double): If high part overflows to infinity,
set errno and recompute overflowed result of the correct sign.
* sysdeps/ieee754/ldbl-128ibm/Makefile
[$(subdir) = stdlib] (tests): Add tst-strtold-ldbl-128ibm.
[$(subdir) = stdlib] ($(objpfx)tst-strtold-ldbl-128ibm): Depend on
$(libm).
* sysdeps/ieee754/ldbl-128ibm/tst-strtold-ldbl-128ibm.c: New file.
For some large arguments, the dbl-64 implementation of remainder gives
zero results with the wrong sign, resulting from a subtraction that is
mathematically correct but does not guarantee that a zero result has
the sign of the first argument to remainder. This patch adds an
appropriate check for this case, similar to other implementations of
remainder in the case of equality, and adds tests of remainder on
inputs already used to test remquo.
Tested for x86_64 and x86.
[BZ #19201]
* sysdeps/ieee754/dbl-64/e_remainder.c (__ieee754_remainder):
Check for zero remainder in case of large exponents and ensure
correct sign of result in that case.
* math/libm-test.inc (remainder_test_data): Add more tests.
nextafter and nexttoward fail to set errno on overflow and underflow.
This patch makes them do so in cases that should include all the cases
where such errno setting is required by glibc's goals for when to set
errno (but not all cases of underflow where the result is nonzero and
so glibc's goals do not require errno setting).
Tested for x86_64, x86, mips64 and powerpc.
[BZ #6799]
* math/s_nextafter.c: Include <errno.h>.
(__nextafter): Set errno on overflow and underflow.
* math/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Include <errno.h>.
(__nextafterf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Include <errno.h>.
(__nldbl_nexttowardf): Set errno on overflow and underflow.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* math/libm-test.inc (nextafter_test_data): Do not allow errno
setting to be missing on overflow. Add more tests.
(nexttoward_test_data): Likewise.
The ldbl-128 version of log1pl raises a spurious "invalid" exception
for a -qNaN argument. This patch fixes this by making the initial
check for infinities and NaNs handle arguments of both signs in such a
way that NaNs result in a NaN being returned (quietly if the input NaN
was quiet) while +Inf results in +Inf being returned and -Inf results
in a qNaN being returned with "invalid" exception raised.
Tested for mips64.
[BZ #19189]
* sysdeps/ieee754/ldbl-128/s_log1pl.c (__log1pl): Make check for
non-finite argument handle arguments with negative sign.
The libm drem functions just call the corresponding __remainder
functions. This patch removes the unnecessary wrappers by making them
into weak aliases at the ELF level.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16171]
* math/w_remainder.c (drem): Define as weak alias of __remainder.
[NO_LONG_DOUBLE] (dreml): Define as weak alias of __remainder.
* math/w_remainderf.c (dremf): Define as weak alias of
__remainderf.
* math/w_remainderl.c (dreml): Define as weak alias of
__remainderl.
* sysdeps/ia64/fpu/e_remainder.S (drem): Define as weak alias of
__remainder.
* sysdeps/ia64/fpu/e_remainderf.S (dremf): Define as weak alias of
__remainderf.
* sysdeps/ia64/fpu/e_remainderl.S (dreml): Define as weak alias of
__remainderl.
* sysdeps/ieee754/ldbl-opt/nldbl-remainder.c (dreml): Define as
weak alias of remainderl.
* sysdeps/ieee754/ldbl-opt/w_remainder.c
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (__drem): Define as strong
alias of __remainder.
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (dreml): Use compat_symbol.
* sysdeps/ieee754/ldbl-opt/w_remainderl.c (__dreml): Define as
strong alias of __remainderl.
(dreml): Use long_double_symbol.
* math/Makefile (libm-calls): Remove w_drem.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Remove drem.
(CFLAGS-nldbl-drem.c): Remove variable.
(CFLAGS-nldbl-remainder.c): Add -fno-builtin-dreml.
* math/w_drem.c: Remove file.
* math/w_dremf.c: Likewise.
* math/w_dreml.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-drem.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_drem.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_dreml.c: Likewise.
C11 defines standard <float.h> macros *_TRUE_MIN for the least
positive subnormal value of a type. Now that we build with
-std=gnu11, we can use these macros in glibc. This patch replaces
previous uses of the GCC predefines __*_DENORM_MIN__ (used in
<float.h> to define *_TRUE_MIN), as well as *_DENORM_MIN references in
comments.
Tested for x86_64 and x86 (testsuite, and that installed shared
libraries are unchanged by the patch). Also tested for powerpc that
installed stripped shared libraries are unchanged by the patch.
* math/libm-test.inc (min_subnorm_value): Use LDBL_TRUE_MIN,
DBL_TRUE_MIN and FLT_TRUE_MIN instead of __LDBL_DENORM_MIN__,
__DBL_DENORM_MIN__ and __FLT_DENORM_MIN__.
* sysdeps/ieee754/dbl-64/s_fma.c (__fma): Refer to DBL_TRUE_MIN
instead of DBL_DENORM_MIN in comment.
* sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Refer to
LDBL_TRUE_MIN instead of LDBL_DENORM_MIN in comment.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <float.h>.
(__nextafterl): Use LDBL_TRUE_MIN instead of __LDBL_DENORM_MIN__.
* sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Refer to
LDBL_TRUE_MIN instead of LDBL_DENORM_MIN in comment.
One common case of __GNUC_PREREQ (4, 7) conditionals is use of
diagnostic control pragmas for -Wmaybe-uninitialized, an option
introduced in GCC 4.7 where older GCC needed -Wuninitialized to be
controlled instead if the warning appeared with older GCC. This patch
removes such conditionals.
(There remain several older uses of -Wno-uninitialized in makefiles
that still need to be converted to diagnostic control pragmas if the
issue is still present with current sources and supported GCC
versions, and it's likely that in most cases those pragmas also will
end up controlling -Wmaybe-uninitialized.)
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch, except for libresolv
since res_send.c contains assertions whose line numbers are changed by
the patch).
* resolv/res_send.c (send_vc) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
* soft-fp/fmadf4.c [__GNUC_PREREQ (4, 7)]: Likewise.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* soft-fp/fmasf4.c [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* soft-fp/fmatf4.c [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* stdlib/setenv.c
[((__GNUC__ << 16) + __GNUC_MINOR__) >= ((4 << 16) + 7)]: Make
code unconditional.
[!(((__GNUC__ << 16) + __GNUC_MINOR__) >= ((4 << 16) + 7))]:
Remove conditional code.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c
(__ieee754_lgamma_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgamma_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c
(__ieee754_lgammaf_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgammaf_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/ldbl-128/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c
(__ieee754_lgammal_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgammal_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/ldbl-96/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
j1 and jn can underflow for small arguments, but fail to set errno
when underflowing to 0. This patch fixes them to set errno in that
case.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18611]
* sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Set errno and
avoid excess range and precision on underflow.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Set errno on
underflow.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Do not allow missing errno setting for
tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
My recent addition of more tests for j0 showed up that the ldbl-128
implementation of j0l produces spurious underflow exceptions for
arguments close to 0 (when the result is very close to 1). This patch
fixes this by just returning the argument in that case.
Tested for mips64 (where it fixes the recently-added tests that were
previously failing).
[BZ #19156]
* sysdeps/ieee754/ldbl-128/e_j0l.c (__ieee754_j0l): Return 1 for
arguments very close to 0.
For 32-bit MIPS and some other systems, various of the lrint, llrint,
lround, llround functions can be missing exceptions on overflow
because casts do not (in current GCC) result in the proper
exceptions. In the MIPS case there are two problems here: MIPS I code
generation uses an assembler macro that doesn't raise exceptions,
while the libgcc conversions of floating-point values to long long
also do not raise "invalid" on all overflow cases (and can raise
spurious "inexact").
This patch adds support in the generic code (only the functions for
which this problem has actually been seen) for forcing the "invalid"
exception in the problem cases, and enables that support for the
affected MIPS cases.
Tested for MIPS; also tested for x86_64 and x86 that installed
stripped shared libraries are unchanged by this patch.
[BZ #16399]
* sysdeps/generic/fix-fp-int-convert-overflow.h: New file.
* sysdeps/ieee754/dbl-64/s_llrint.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_llround.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lrint.c: Include
<fix-fp-int-convert-overflow.h>.
(__lrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lround.c: Include
<fix-fp-int-convert-overflow.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llroundf.c: Include <fenv.h>,
<limits.h> and <fix-fp-int-convert-overflow.h>.
(__llroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lroundf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h: New file.
The dbl-64 implementation of lrint produces incorrect results for some
arguments with 64-bit long because a 32-bit (unsigned) low part of the
mantissa is shifted left, losing high bits in the process. This patch
fixes this by casting to long int before shifting, as in lround (as
this case only applies for 64-bit long, there are no issues with
sign-extension).
Tested for mips64 (n64).
[BZ #19095]
* sysdeps/ieee754/dbl-64/s_lrint.c (__lrint): Cast low part of
mantissa to long int before shifting left.
The dbl-64, ldbl-96 and ldbl-128 implementations of lrint and llrint
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist. It also obviously cannot arise in
FE_TOWARDZERO mode.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT, while raising FE_INEXACT explicitly in the cases where it
is needed; unlike lround and llround, FE_INEXACT is required, not
optional, for these functions for a within-range inexact result).
The fixes are conditional on FE_INVALID or FE_INEXACT being defined.
If any future architecture supports one but not both of those
exceptions, the code will fail to compile and need fixing to handle
that case (this seemed better than conditioning on both macros being
defined, resulting in code that would compile but quietly miss
exceptions on such a system).
Tested for x86_64, x86 and mips64. Tested the ldbl-96 changes (only
relevant for ia64, it appears) on x86_64 by removing the x86_64
versions of lrintl / llrintl.
[BZ #19094]
* sysdeps/ieee754/dbl-64/s_lrint.c: Include <fenv.h> and
<limits.h>.
(__lrint) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* math/libm-test.inc (lrint_test_data): Add more tests.
(llrint_test_data): Likewise.
The dbl-64, ldbl-96 and ldbl-128 implementations of lround and llround
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT).
Tested for x86_64, x86 and mips64.
[BZ #19088]
* sysdeps/ieee754/dbl-64/s_lround.c: Include <fenv.h> and
<limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Include <fenv.h>
and <limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* math/libm-test.inc (lround_test_data): Add more tests.
(llround_test_data): Likewise.
The ldbl-128 implementations of lrintl and lroundl miss "invalid"
exceptions on systems with 32-bit long for arguments that overflow
long but have exponent below 48. This patch fixes this by rearranging
the sequence of tests in the code so the exponent < 48 case is only
used for exponents that don't overflow long.
Tested for mips64 (n32 and n64).
[BZ #19085]
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl): Move test for
exponent below 48 inside case for non-overflowing exponent.
* sysdeps/ieee754/ldbl-128/s_lroundl.c (__lroundl): Likewise.
This patch enables use of sysdeps/ieee754/dbl-64/wordsize-64 for
MIPS64 (both n64 and n32), removing a #error in one case now that case
has been tested and found to work.
Tested for mips64 (n64 and n32).
* sysdeps/mips/mips64/Implies: Use ieee754/dbl-64/wordsize-64.
* sysdeps/ieee754/dbl-64/wordsize-64/s_issignaling.c
(__issignaling) [HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Remove #error.
The implementation of lround in dbl-64/wordsize-64 as an alias or
wrapper for llround is always incorrect when long is not 64-bit,
because it misses required exceptions in overflow cases, as shown by
my recently added tests. This patch removes that alias / wrapper in
the non-LP64 case, together with the REGISTER_CAST_INT32_TO_INT64
macro, restoring the previous version of lround for dbl-64/wordsize-64
(newly conditioned on !_LP64).
Tested for x86_64, and for mips64 with use of dbl-64/wordsize-64
enabled.
[BZ #19079]
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Restore previous
file, conditioned on [!_LP64].
* sysdeps/ieee754/dbl-64/wordsize-64/s_llround.c
[!_LP64] (__lround): Do not define as function or alias.
[!_LP64] (lround): Likewise.
[!_LP64] (__lroundl): Likewise.
[!_LP64] (lroundl): Likewise.
* sysdeps/tile/sysdep.h (REGISTER_CAST_INT32_TO_INT64): Remove
macro.
* sysdeps/x86_64/x32/sysdep.h (REGISTER_CAST_INT32_TO_INT64):
Likewise.
The ldbl-128ibm expl wrapper checks the argument to determine when to
call __kernel_standard_l, thereby overriding overflowing results from
__ieee754_expl that could otherwise (given appropriately patched
libgcc) be correct for the rounding mode. This patch changes it to
check the result of __ieee754_expl instead, as other versions of this
wrapper do.
Tested for powerpc.
[BZ #19078]
* sysdeps/ieee754/ldbl-128ibm/w_expl.c (o_thres): Remove variable.
(u_thres): Likewise.
(__expl): Determine whether to call __kernel_standard_l based on
value of result, not argument.