Hurd uses an empty prefix, so the linker scripts end up in /lib, the
find command picked them up, and stripping them failed because they
are not ELF files.
Since the switch away from auto-generated wrappers for these system
calls, the kludge is already included in the C source file of the
system call wrapper.
This command uses pre-built compilers to re-install the Linux headers
from the current sources into a temporary location and runs glibc's
“make update-syscalls-lists” against that. This updates the glibc
source tree with the current system call numbers.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
The new classes GlibcPolicyForCompiler and GlibcPolicyForBuild allow
customization of the Glibc.build_glibc method, replacing the existing
for_compiler flag.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Use <arch-syscall.h> instead of <asm/unistd.h> to obtain the system
call numbers. A few direct includes of <asm/unistd.h> need to be
removed (if the system call numbers are already provided indirectly
by <sysdep.h>) or replaced with <sys/syscall.h>.
Current Linux headers for alpha define the required system call names,
so most of the _NR_* hacks are no longer needed. For the 32-bit arm
architecture, eliminate the INTERNAL_SYSCALL_ARM macro, now that we
have regular system call names for cacheflush and set_tls. There are
more such cleanup opportunities for other architectures, but these
cleanups are required to avoid macro redefinition errors during the
build.
For ia64, it is desirable to use <asm/break.h> directly to obtain
the break number for system calls (which is not a system call number
itself). This requires replacing __BREAK_SYSCALL with
__IA64_BREAK_SYSCALL because the former is defined as an alias in
<asm/unistd.h>, but not in <asm/break.h>.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
The new tables are currently only used for consistency checks
with the installed kernel headers and the architecture-independent
system call names table. They are based on Linux 5.4.
The goal is to use these architecture-specific tables to ensure
that system call wrappers are available irrespective of the version
of the installed kernel headers.
The tables are formatted in the form of C header files so that they
can be used directly in an #include directive, without external
preprocessing. (External preprocessing of a plain table file
would introduce cross-subdirectory dependency issues.) However,
the intent is that they can still be treated as tables and can be
processed by simple tools.
The irregular system call names on 32-bit arm add a complication.
The <fixup-asm-unistd.h> header is introduced to work around that,
and the system calls are listed under regular names in the
<arch-syscall.h> file.
A make target, update-syscalls-list, is added to patch the glibc
sources with data from the current kernel headers.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
I've updated copyright dates in glibc for 2020. This is the patch for
the changes not generated by scripts/update-copyrights and subsequent
build / regeneration of generated files. As well as the usual annual
updates, mainly dates in --version output (minus libc.texinfo which
previously had to be handled manually but is now successfully updated
by update-copyrights), there is a fix to
sysdeps/unix/sysv/linux/powerpc/bits/termios-c_lflag.h where a typo in
the copyright notice meant it failed to be updated automatically.
Please remember to include 2020 in the dates for any new files added
in future (which means updating any existing uncommitted patches you
have that add new files to use the new copyright dates in them).
Currently d_t_fmt formats time as "plkst. %H un %M". A quick Google
search says that "plkst." means "o’clock" and "un" means "and".
Also this format does not display seconds.
CLDR does not mention anything like that. We have no reason to use
anything different than "%H:%M:%S".
This adds _hurd_sigstate_set_global_rcv used by libpthread to enable
POSIX-confirming behavior of signals on a per-thread basis.
This also provides a sigstate destructor _hurd_sigstate_delete, and a
global process signal state, which needs to be locked and check when
global disposition is enabled, thus the addition of _hurd_sigstate_lock
_hurd_sigstate_actions _hurd_sigstate_pending _hurd_sigstate_unlock helpers.
This also updates all the glibc code accordingly.
This also drops support for get_int(INIT_SIGMASK), which did not make sense
any more since we do not have a single signal thread any more.
During fork/spawn, this also reinitializes the child global sigstate's
lock. That cures an issue that would very rarely cause a deadlock in the
child in fork, tries to unlock ss' critical section lock at the end of
fork. This will typically (always?) be observed in /bin/sh, which is not
surprising as that is the foremost caller of fork.
To reproduce an intermediate state, add an endless loop if
_hurd_global_sigstate is locked after __proc_dostop (cast through
volatile); that is, while still being in the fork's parent process.
When that triggers (use the libtool testsuite), the signal thread has
already locked ss (which is _hurd_global_sigstate), and is stuck at
hurdsig.c:685 in post_signal, trying to lock _hurd_siglock (which the
main thread already has locked and keeps locked until after
__task_create). This is the case that ss->thread == MACH_PORT_NULL, that
is, a global signal. In the main thread, between __proc_dostop and
__task_create is the __thread_abort call on the signal thread which would
abort any current kernel operation (but leave ss locked). Later in fork,
in the parent, when _hurd_siglock is unlocked in fork, the parent's
signal thread can proceed and will unlock eventually the global sigstate.
In the client, _hurd_siglock will likewise be unlocked, but the global
sigstate never will be, as the client's signal thread has been configured
to restart execution from _hurd_msgport_receive. Thus, when the child
tries to unlock ss' critical section lock at the end of fork, it will
first lock the global sigstate, will spin trying to lock it, which can
never be successful, and we get our deadlock.
Options seem to be:
* Move the locking of _hurd_siglock earlier in post_signal -- but that
may generally impact performance, if this locking isn't generally
needed anyway?
On the other hand, would it actually make sense to wait here until we
are not any longer in a critical section (which is meant to disable
signal delivery anyway (but not for preempted signals?))?
* Clear the global sigstate in the fork's child with the rationale that
we're anyway restarting the signal thread from a clean state. This
has now been implemented.
Why has this problem not been observed before Jérémie's patches? (Or has
it? Perhaps even more rarely?) In _S_msg_sig_post, the signal is now
posted to a *global receiver thread*, whereas previously it was posted to
the *designated signal-receiving thread*. The latter one was in a
critical section in fork, so didn't try to handle the signal until after
leaving the critical section? (Not completely analyzed and verified.)
Another question is what the signal is that is being received
during/around the time __proc_dostop executes.
This should not change the current behavior, although this fixes a few
minor bugs which were made apparent in the process of global signal
disposition work:
- Split into more functions
- Scope variables more restrictively
- Split out inner functions
- refactor check_pending_signals
- make sigsuspend POSIX-conformant.
- fix uninitialized act value.
Adapted from the Linux x86 functions.
Not thoroughly tested, but manual testing as well as glibc tests look fine, and
manual -lpthread testing also looks fine (within the given bounds for a new
stack to be used with makecontext).
This has also been in use in Debian since 2013.
Some compiler versions, e.g. GCC 7, complain when -mlong-double-128 is
used together with -mabi=ibmlongdouble or -mabi=ieeelongdouble,
producing the following error message:
cc1: error: ‘-mabi=ibmlongdouble’ requires ‘-mlong-double-128’
This patch removes -mlong-double-128 from the compilation lines that
explicitly request -mabi=*longdouble.
Tested for powerpc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Some of the files that provide stdio.h and wchar.h functions have a
filename prefixed with 'io', such as 'iovsprintf.c'. On platforms that
imply ldbl-128ibm-compat, these files must be compiled with the flag
-mabi=ibmlongdouble. This patch adds this flag to their compilation.
Notice that this is not required for the other files that provide
similar functions, because filenames that are not prefixed with 'io'
have ldbl-128ibm-compat counterparts in the Makefile, which already adds
-mabi=ibmlongdouble to them.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
On platforms where long double has IEEE binary128 format as a third
option (initially, only powerpc64le), many exported functions are
redirected to their __*ieee128 equivalents. This redirection is
provided by installed headers such as stdio-ldbl.h, and is supposed to
work correctly with user code.
However, during the build of glibc, similar redirections are employed,
in internal headers, such as include/stdio.h, in order to avoid extra
PLT entries. These redirections conflict with the redirections to
__*ieee128, and must be avoided during the build. This patch protects
the second redirections with a test for __LONG_DOUBLE_USES_FLOAT128, a
new macro that is defined to 1 when functions that deal with long double
typed values reuses the _Float128 implementation (this is currently only
true for powerpc64le).
Tested for powerpc64le, x86_64, and with build-many-glibcs.py.
Co-authored-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Reviewed-by: Florian Weimer <fweimer@redhat.com>
All architectures now uses the Linux generic implementation which
uses __NR_rt_sigprocmask.
Checked on x86_64-linux-gnu, sparc64-linux-gnu, ia64-linux-gnu,
s390x-linux-gnu, and alpha-linux-gnu.
The functions do not fail regardless of the argument value. Also, for
Linux the return value is not correct on some platforms due the missing
usage of INTERNAL_SYSCALL_ERROR_P / INTERNAL_SYSCALL_ERRNO macros.
Checked on x86_64-linux-gnu, i686-linux-gnu, and sparc64-linux-gnu.
On powerpc64le, the libm_alias_float128_other_r_ldbl macro is
used to create an alias between totalorderf128 and __totalorderlieee128,
as well as between the totalordermagf128 and __totalordermaglieee128.
However, the totalorder* and totalordermag* functions changed their
parameter type since commit ID 42760d7646 and got compat symbols for
their old versions. With this change, the aforementioned macro would
create two conflicting aliases for __totalorderlieee128 and
__totalordermaglieee128.
This patch avoids the creation of the alias between the IEEE long double
symbols (__totalorderl*ieee128) and the compat symbols, because the IEEE
long double functions have never been exported thus don't need such
compat symbol.
Tested for powerpc64le.
Reviewed-by: Joseph Myers <joseph@codesourcery.com>
This patch adds IEEE long double versions of q*cvt* functions for
powerpc64le. Unlike all other long double to/from string conversion
functions, these do not rely on internal functions that can take
floating-point numbers with different formats and act on them
accordingly, instead, the related files are rebuilt with the
-mabi=ieeelongdouble compiler flag set.
Having -mabi=ieeelongdouble passed to the compiler causes the object
files to be marked with a .gnu_attribute that is incompatible with the
.gnu_attribute in files built with -mabi=ibmlongdouble (the default).
The difference causes error messages similar to the following:
ld: libc_pic.a(s_isinfl.os) uses IBM long double,
libc_pic.a(ieee128-qefgcvt_r.os) uses IEEE long double.
collect2: error: ld returned 1 exit status
make[2]: *** [../Makerules:649: libc_pic.os] Error 1
Although this warning is useful in other situations, the library
actually needs to have functions with different long double formats, so
.gnu_attribute generation is explicitly disabled for these files with
the use of -mno-gnu-attribute.
Tested for powerpc64le on the branch that actually enables the
sysdeps/ieee754/ldbl-128ibm-compat for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
This patch refactors the *cvt functions implementation in a way that
makes it easier to re-use them for implementing the IEEE long double on
powerpc64le. By removing the macros that generate the function names
(APPEND combined with FUNC_PREFIX), the new code makes it easier to
define new function names, such as __qecvtieee128.
Tested that installed stripped binaries for all build-many-glibcs
targets remain identical before and after this patch. Also tested for
powerpc64le and x86_64.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
This patch refactors the *cvt functions implementation in a way that
makes it easier to re-use them for implementing the IEEE long double on
powerpc64le. By splitting the implementation per se in one file
(efgcvt-template.c) and the alias definitions in others (e.g. efgcvt.c),
the new code makes it easier to define new function names, such as
__qecvtieee128.
Tested that installed stripped binaries for all build-many-glibcs
targets remain identical before and after this patch. Also tested for
powerpc64le and x86_64.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Due to the branch prediction issue of Kunpeng processor, we found
memset_generic has poor performance on middle sizes setting, and so
we reconstructed the logic, expanded the loop by 4 times in set_long
to solve the problem, even when setting below 1K sizes have benefit.
Another change is that DZ_ZVA seems no work when setting zero, so we
discarded it and used set_long to set zero instead. Fewer branches and
predictions also make the zero case have slightly improvement.
Checked on aarch64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Optimize the strlen implementation by using vector operations and
loop unrolling in main loop.Compared to __strlen_generic,it reduces
latency of cases in bench-strlen by 7%~18% when the length of src
is greater than 128 bytes, with gains throughout the benchmark.
Checked on aarch64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Kunpeng processer is a 64-bit Arm-compatible CPU released by Huawei,
and we have already signed a copyright assignement with the FSF.
This patch adds its to cpu list, and related macro for IFUNC.
Checked on aarch64-linux-gnu.
Reviewed-by: Szabolcs Nagy <Szabolcs.Nagy@arm.com>
Considering the excellent performance of memchr.S on glibc 2.30, the
same algorithm is used to find chrin. Compared to memrchr.c, this
method with memrchr.S achieves an average performance improvement
of 58% based on benchtest and its extension cases.
Checked on aarch64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Optimize the strlen implementation by using vector operations and
loop unrooling in main loop. Compared to aarch64/strnlen.S, it
reduces latency of cases in bench-strnlen by 11%~24% when the length
of src is greater than 64 bytes, with gains throughout the benchmark.
Checked on aarch64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Optimize the strcpy implementation by using vector loads and operations
in main loop.Compared to aarch64/strcpy.S, it reduces latency of cases
in bench-strlen by 5%~18% when the length of src is greater than 64
bytes, with gains throughout the benchmark.
Checked on aarch64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
The loop body is expanded from a 16-byte comparison to a 64-byte
comparison, and the usage of ldp is replaced by the Post-index
mode to the Base plus offset mode. Hence, compare can faster 18%
around > 128 bytes in all.
Checked on aarch64-linux-gnu.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
If the wait4 syscall is not available (such as y2038 safe 32-bit
systems) waitid should be used instead. However prior Linux 5.4
waitid is not a full superset of other wait syscalls, since it
does not include support for waiting for the current process group.
It is possible to emulate wait4 by issuing an extra syscall to get
the current process group, but it is inherent racy: after the current
process group is received and before it is passed to waitid a signal
could arrive causing the current process group to change.
So waitid is used if wait4 is not defined iff the build is
enabled with a minimum kernel if 5.4+. The new assume
__ASSUME_WAITID_PID0_P_PGID is added and an error is issued if waitid
can not be implemented by either __NR_wait4 or
__NR_waitid && __ASSUME_WAITID_PID0_P_PGID.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Co-authored-by: Alistair Francis <alistair.francis@wdc.com>
The POSIX implementation is used as default and both BSD and Linux
version are removed. It simplifies the implementation for
architectures that do not provide either __NR_waitpid or
__NR_wait4.
Checked on x86_64-linux-gnu and powerpc64le-linux-gnu.
It enables and disables cancellation with pthread_setcancelstate
before calling the waitpid. It simplifies the waitpid implementation
for architectures that do not provide either __NR_waitpid or
__NR_wait4.
Checked on x86_64-linux-gnu.
Previously, ld.so was invoked only with the elf subdirectory on the
library search path. Since the soname link for libc.so only exists in
the top-level build directory, this leaked the system libc into the
test.
The posix_spawn on sparc issues invalid sigprocmask calls:
rt_sigprocmask(0xffe5e15c /* SIG_??? */, ~[], 0xffe5e1dc, 8) = -1 EINVAL (Invalid argument)
Which make support/tst-support_capture_subprocess fails with random
output (due the child signal being wrongly captured by the parent).
Tracking the culprit it seems to be a wrong code generation in the
INTERNAL_SYSCALL due the automatic sigset_t used on
__libc_signal_block_all:
return INTERNAL_SYSCALL (rt_sigprocmask, err, 4, SIG_BLOCK, &SIGALL_SET,
set, _NSIG / 8);
Where SIGALL_SET is defined as:
((__sigset_t) { .__val = {[0 ... _SIGSET_NWORDS-1 ] = -1 } })
Building the expanded __libc_signal_block_all on sparc64 with recent
compiler (gcc 8.3.1 and 9.1.1):
#include <signal>
int
_libc_signal_block_all (sigset_t *set)
{
INTERNAL_SYSCALL_DECL (err);
return INTERNAL_SYSCALL (rt_sigprocmask, err, 4, SIG_BLOCK, &SIGALL_SET,
set, _NSIG / 8);
}
The first argument (SIG_BLOCK) is not correctly set on 'o0' register:
__libc_signal_block_all:
save %sp, -304, %sp
add %fp, 1919, %o0
mov 128, %o2
sethi %hi(.LC0), %o1
call memcpy, 0
or %o1, %lo(.LC0), %o1
add %fp, 1919, %o1
mov %i0, %o2
mov 8, %o3
mov 103, %g1
ta 0x6d;
bcc,pt %xcc, 1f
mov 0, %g1
sub %g0, %o0, %o0
mov 1, %g1
1: sra %o0, 0, %i0
return %i7+8
nop
Where if SIGALL_SET is defined a const object, gcc correctly sets the
expected kernel argument in correct register:
sethi %hi(.LC0), %o1
call memcpy, 0
or %o1, %lo(.LC0), %o1
-> mov 1, %o0
add %fp, 1919, %o1
Another possible fix is use a static const object. Although there
should not be a difference between a const compound literal and a static
const object, the gcc C99 status page [1] has a note stating that this
optimization is not implemented:
"const-qualified compound literals could share storage with each
other and with string literals, but currently don't.".
This patch fixes it by moving both sigset_t that represent the
signal sets to static const data object. It generates slight better
code where the object reference is used directly instead of a stack
allocation plus the content materialization.
Checked on x86_64-linux-gnu, i686-linux-gnu, and sparc64-linux-gnu.
[1] https://gcc.gnu.org/c99status.html
This patch adds the missing bits for powerpc and fixes both
tst-ifunc-fault-lazy and tst-ifunc-fault-bindnow failures on
powerpc-linux-gnu.
Checked on powerpc-linux-gnu and powerpc-linux-gnu-power4.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
After commit f7649d5780 ("dlopen: Do not
block signals"), the dynamic linker no longer uses sigprocmask, which
means that it does not have to be made available explicitly on hurd.
This reverts commit 892badc9bb
("hurd: Make __sigprocmask GLIBC_PRIVATE") and commit
d5ed9ba29a ("hurd: Fix ld.so link"),
but keeps the comment changes from the second commit.