Since these functions are used in both catgets/gencat.c and
malloc/memusage{,stat}.c, it make sense to move them into a dedicated
header where they can be inlined.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
GCC docs explicitly list perror () as a good candidate for using
__attribute__ ((cold)). So apply __COLD to perror () and similar
functions.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20230429131223.2507236-3-bugaevc@gmail.com>
include/regex.h had not been updated during the int -> Idx transition,
and the prototypes don't matched the definitions in regexec.c.
In regcomp.c, most interfaces were updated for Idx, except for two ones
guarded by #if _LIBC.
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
The hooks mechanism uses symbol sets for running lists of functions,
which requires either extra linker directives to provide any hardening
(such as RELRO) or additional code (such as pointer obfuscation via
mangling with random value).
Currently only hurd uses set-hooks.h so we remove it from the generic
includes. The generic implementation uses direct function calls which
provide hardening and good code generation, observability and debugging
without the need for extra linking options or special code handling.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Instead of using a special ELF section along with a linker script
directive to put the IO vtables within the RELRO section, the libio
vtables are all moved to an array marked as data.relro (so linker
will place in the RELRO segment without the need of extra directives).
To avoid static linking namespace issues and including all vtable
referenced objects, all required function pointers are set to weak alias.
Checked on x86_64-linux-gnu, i686-linux-gnu, and aarch64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
They are both used by __libc_freeres to free all library malloc
allocated resources to help tooling like mtrace or valgrind with
memory leak tracking.
The current scheme uses assembly markers and linker script entries
to consolidate the free routine function pointers in the RELRO segment
and to be freed buffers in BSS.
This patch changes it to use specific free functions for
libc_freeres_ptrs buffers and call the function pointer array directly
with call_function_static_weak.
It allows the removal of both the internal macros and the linker
script sections.
Checked on x86_64-linux-gnu, i686-linux-gnu, and aarch64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
C2x adds binary integer constants starting with 0b or 0B, and supports
those constants for the %i scanf format (in addition to the %b format,
which isn't yet implemented for scanf in glibc). Implement that scanf
support for glibc.
As with the strtol support, this is incompatible with previous C
standard versions, in that such an input string starting with 0b or 0B
was previously required to be parsed as 0 (with the rest of the input
potentially matching subsequent parts of the scanf format string).
Thus this patch adds 12 new __isoc23_* functions per long double
format (12, 24 or 36 depending on how many long double formats the
glibc configuration supports), with appropriate header redirection
support (generally very closely following that for the __isoc99_*
scanf functions - note that __GLIBC_USE (DEPRECATED_SCANF) takes
precedence over __GLIBC_USE (C2X_STRTOL), so the case of GNU
extensions to C89 continues to get old-style GNU %a and does not get
this new feature). The function names would remain as __isoc23_* even
if C2x ends up published in 2024 rather than 2023.
When scanf %b support is added, I think it will be appropriate for all
versions of scanf to follow C2x rules for inputs to the %b format
(given that there are no compatibility concerns for a new format).
Tested for x86_64 (full glibc testsuite). The first version was also
tested for powerpc (32-bit) and powerpc64le (stdio-common/ and wcsmbs/
tests), and with build-many-glibcs.py.
C2x adds binary integer constants starting with 0b or 0B, and supports
those constants in strtol-family functions when the base passed is 0
or 2. Implement that strtol support for glibc.
As discussed at
<https://sourceware.org/pipermail/libc-alpha/2020-December/120414.html>,
this is incompatible with previous C standard versions, in that such
an input string starting with 0b or 0B was previously required to be
parsed as 0 (with the rest of the string unprocessed). Thus, as
proposed there, this patch adds 20 new __isoc23_* functions with
appropriate header redirection support. This patch does *not* do
anything about scanf %i (which will need 12 new functions per long
double variant, so 12, 24 or 36 depending on the glibc configuration),
instead leaving that for a future patch. The function names would
remain as __isoc23_* even if C2x ends up published in 2024 rather than
2023.
Making this change leads to the question of what should happen to
internal uses of these functions in glibc and its tests. The header
redirection (which applies for _GNU_SOURCE or any other feature test
macros enabling C2x features) has the effect of redirecting internal
uses but without those uses then ending up at a hidden alias (see the
comment in include/stdio.h about interaction with libc_hidden_proto).
It seems desirable for the default for internal uses to be the same
versions used by normal code using _GNU_SOURCE, so rather than doing
anything to disable that redirection, similar macro definitions to
those in include/stdio.h are added to the include/ headers for the new
functions.
Given that the default for uses in glibc is for the redirections to
apply, the next question is whether the C2x semantics are correct for
all those uses. Uses with the base fixed to 10, 16 or any other value
other than 0 or 2 can be ignored. I think this leaves the following
internal uses to consider (an important consideration for review of
this patch will be both whether this list is complete and whether my
conclusions on all entries in it are correct):
benchtests/bench-malloc-simple.c
benchtests/bench-string.h
elf/sotruss-lib.c
math/libm-test-support.c
nptl/perf.c
nscd/nscd_conf.c
nss/nss_files/files-parse.c
posix/tst-fnmatch.c
posix/wordexp.c
resolv/inet_addr.c
rt/tst-mqueue7.c
soft-fp/testit.c
stdlib/fmtmsg.c
support/support_test_main.c
support/test-container.c
sysdeps/pthread/tst-mutex10.c
I think all of these places are OK with the new semantics, except for
resolv/inet_addr.c, where the POSIX semantics of inet_addr do not
allow for binary constants; thus, I changed that file (to use
__strtoul_internal, whose semantics are unchanged) and added a test
for this case. In the case of posix/wordexp.c I think accepting
binary constants is OK since POSIX explicitly allows additional forms
of shell arithmetic expressions, and in stdlib/fmtmsg.c SEV_LEVEL is
not in POSIX so again I think accepting binary constants is OK.
Functions such as __strtol_internal, which are only exported for
compatibility with old binaries from when those were used in inline
functions in headers, have unchanged semantics; the __*_l_internal
versions (purely internal to libc and not exported) have a new
argument to specify whether to accept binary constants.
As well as for the standard functions, the header redirection also
applies to the *_l versions (GNU extensions), and to legacy functions
such as strtoq, to avoid confusing inconsistency (the *q functions
redirect to __isoc23_*ll rather than needing their own __isoc23_*
entry points). For the functions that are only declared with
_GNU_SOURCE, this means the old versions are no longer available for
normal user programs at all. An internal __GLIBC_USE_C2X_STRTOL macro
is used to control the redirections in the headers, and cases in glibc
that wish to avoid the redirections - the function implementations
themselves and the tests of the old versions of the GNU functions -
then undefine and redefine that macro to allow the old versions to be
accessed. (There would of course be greater complexity should we wish
to make any of the old versions into compat symbols / avoid them being
defined at all for new glibc ABIs.)
strtol_l.c has some similarity to strtol.c in gnulib, but has already
diverged some way (and isn't listed at all at
https://sourceware.org/glibc/wiki/SharedSourceFiles unlike strtoll.c
and strtoul.c); I haven't made any attempts at gnulib compatibility in
the changes to that file.
I note incidentally that inttypes.h and wchar.h are missing the
__nonnull present on declarations of this family of functions in
stdlib.h; I didn't make any changes in that regard for the new
declarations added.
Although static linker can optimize it to local call, it follows the
internal scheme to provide hidden proto and definitions.
Reviewed-by: Carlos Eduardo Seo <carlos.seo@linaro.org>
Although static linker can optimize it to local call, it follows the
internal scheme to provide hidden proto and definitions.
Reviewed-by: Carlos Eduardo Seo <carlos.seo@linaro.org>
Add an optimization to avoid calling clone3 when glibc detects that
there is no kernel support. It also adds __ASSUME_CLONE3, which allows
skipping this optimization and issuing the clone3 syscall directly.
It does not handle the the small window between 5.3 and 5.5 for
posix_spawn (CLONE_CLEAR_SIGHAND was added in 5.5).
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The clone3 flag resets all signal handlers of the child not set to
SIG_IGN to SIG_DFL. It allows to skip most of the sigaction calls
to setup child signal handling, where previously a posix_spawn
had to issue 2 times NSIG sigaction calls (one to obtain the current
disposition and another to set either SIG_DFL or SIG_IGN).
With POSIX_SPAWN_SETSIGDEF the child will setup the signal for the case
where the disposition is SIG_IGN.
The code must handle the fallback where clone3 is not available. This is
done by splitting __clone_internal_fallback from __clone_internal.
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
All internal callers of __clone3 should provide an already aligned
stack. Removing the stack alignment in __clone3 is a net gain: it
simplifies the internal function contract (mask/unmask signals) along
with the arch-specific code.
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Different than kernel, clone3 returns EINVAL for NULL struct
clone_args or function pointer. This is similar to clone
interface that return EINVAL for NULL function argument.
It also clean up the Linux clone3.h interface, since it not
currently exported.
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This shows up as an assertion failure when sprintf is called with
a specifier like "%.8g" and libquadmath is linked in:
Fatal glibc error: printf_buffer_as_file.c:31
(__printf_buffer_as_file_commit): assertion failed:
file->stream._IO_write_ptr <= file->next->write_end
Fix this by detecting pointer wraparound in __vsprintf_internal
and saturate the addition to the end of the address space instead.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Always null-terminate the buffer and set E2BIG if the buffer is too
small. This fixes bug 27857.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The internal buffer size is set to 2048 bytes. This is less than
the original BUFSIZ value used by buffered_vfprintf before
the conversion, but it hopefully covers all cases where write
boundaries matter.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The buffer resizing algorithm is slightly different. The initial
buffer is on the stack, and small buffers are directly allocated
on the heap using the exact required size. The overhead of the
additional copy is compensated by the lowered setup cost for buffers
compared to libio streams.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
vfprintf is entangled with vfwprintf (of course), __printf_fp,
__printf_fphex, __vstrfmon_l_internal, and the strfrom family of
functions. The latter use the internal snprintf functionality,
so vsnprintf is converted as well.
The simples conversion is __printf_fphex, followed by
__vstrfmon_l_internal and __printf_fp, and finally
__vfprintf_internal and __vfwprintf_internal. __vsnprintf_internal
and strfrom* are mostly consuming the new interfaces, so they
are comparatively simple.
__printf_fp is a public symbol, so the FILE *-based interface
had to preserved.
The __printf_fp rewrite does not change the actual binary-to-decimal
conversion algorithm, and digits are still not emitted directly to
the target buffer. However, the staging buffer now uses bytes
instead of wide characters, and one buffer copy is eliminated.
The changes are at least performance-neutral in my testing.
Floating point printing and snprintf improved measurably, so that
this Lua script
for i=1,5000000 do
print(i, i * math.pi)
end
runs about 5% faster for me. To preserve fprintf performance for
a simple "%d" format, this commit has some logic changes under
LABEL (unsigned_number) to avoid additional function calls. There
are certainly some very easy performance improvements here: binary,
octal and hexadecimal formatting can easily avoid the temporary work
buffer (the number of digits can be computed ahead-of-time using one
of the __builtin_clz* built-ins). Decimal formatting can use a
specialized version of _itoa_word for base 10.
The existing (inconsistent) width handling between strfmon and printf
is preserved here. __print_fp_buffer_1 would have to use
__translated_number_width to achieve ISO conformance for printf.
Test expectations in libio/tst-vtables-common.c are adjusted because
the internal staging buffer merges all virtual function calls into
one.
In general, stack buffer usage is greatly reduced, particularly for
unbuffered input streams. __printf_fp can still use a large buffer
in binary128 mode for %g, though.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This function will be used to compute the width of a number
after i18n digit translation.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
And __wprintf_function_invoke. These functions will be used to
to call registered printf specifier callbacks on printf buffers
after vfprintf and vfwprintf have been converted to buffers. The new
implementation avoids alloca/variable length arrays.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
These buffers will eventually be used instead of FILE * objects
to implement printf functions. The multibyte buffer is struct
__printf_buffer, the wide buffer is struct __wprintf_buffer.
To enable writing type-generic code, the header files
printf_buffer-char.h and printf_buffer-wchar_t.h define the
Xprintf macro differently, enabling Xprintf (buffer) to stand
for __printf_buffer and __wprintf_buffer as appropriate. For
common cases, macros like Xprintf_buffer are provided as a more
syntactically convenient shortcut.
Buffer-specific flush callbacks are implemented with a switch
statement instead of a function pointer, to avoid hardening issues
similar to those of libio vtables. struct __printf_buffer_as_file
is needed to support custom printf specifiers because the public
interface for that requires passing a FILE *, which is why there
is a trapdoor back from these buffers to FILE * streams.
Since the immediate user of these interfaces knows when processing
has finished, there is no flush callback for the end of processing,
only a flush callback for the intermediate buffer flush.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Currently glibc uses in_time_t_range to detects time_t overflow,
and if it occurs fallbacks to 64 bit syscall version.
The function name is confusing because internally time_t might be
either 32 bits or 64 bits (depending on __TIMESIZE).
This patch refactors the in_time_t_range by replacing it with
in_int32_t_range for the case to check if the 64 bit time_t syscall
should be used.
The in_time_t range is used to detect overflow of the
syscall return value.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Similar to ppoll, the poll.h header needs to redirect the poll call
to a proper fortified ppoll with 64 bit time_t support.
The implementation is straightforward, just need to add a similar
check as __poll_chk and call the 64 bit time_t ppoll version. The
debug fortify tests are also extended to cover 64 bit time_t for
affected ABIs.
Unfortunately it requires an aditional symbol, which makes backport
tricky. One possibility is to add a static inline version if compiler
supports is and call abort instead of __chk_fail, so fortified version
will call __poll64 in the end.
Another possibility is to just remove the fortify support for
_TIME_BITS=64.
Checked on i686-linux-gnu.
For clang the redeclaration after the first use, the visibility attribute
is silently ignored (symbol is STV_DEFAULT) while the asm label attribute
causes an error.
Reviewed-by: Fangrui Song <maskray@google.com>
Compilers may not be able to apply asm redirections to functions
after these functions are used for the first time, e.g. clang 15.
Reviewed-by: Fangrui Song <maskray@google.com>
Compilers may not be able to apply asm redirections to functions after
these functions are used for the first time, e.g. clang 15.
Reviewed-by: Fangrui Song <maskray@google.com>
Turns out scratch_buffer_dupfree internal API was unused since
commit ef0700004b
stdlib: Simplify buffer management in canonicalize
And the related test in malloc/tst-scratch_buffer had issues
so it's better to remove it completely.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
Non-at functions can be implemented by just calling the corresponding at
function with AT_FDCWD and zero at_flags.
In the linkat case, the at behavior is different (O_NOLINK), so this introduces
__linkat_common to pass O_NOLINK as appropriate.
lstat functions can also be implemented with fstatat by adding
__fstatat64_common which takes a flags parameter in addition to the at_flags
parameter,
In the end this factorizes chmod, chown, link, lstat64, mkdir, readlink,
rename, stat64, symlink, unlink, utimes.
This also makes __lstat, __lxstat64, __stat and __xstat64 directly use
__fstatat64_common instead of __lstat64 or __stat64.
Similar to d0fa09a770, but for wchar.h. Fixes [BZ #27087] by applying
all long double related asm redirections before using functions in
bits/wchar2.h.
Moves the function declarations from wcsmbs/bits/wchar2.h to a new file
wcsmbs/bits/wchar2-decl.h that will be included first in wcsmbs/wchar.h.
Tested with build-many-glibcs.py.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The public parser functions around the ns_rr record type produce
textual domain names, but usually, this is not what we need while
parsing DNS packets within glibc. This commit adds two new helper
functions, __ns_rr_cursor_init and __ns_rr_cursor_next, for writing
packet parsers, and struct ns_rr_cursor, struct ns_rr_wire as
supporting types.
In theory, it is possible to avoid copying the owner name
into the rname field in __ns_rr_cursor_next, but this would need
more functions that work on compressed names.
Eventually, __res_context_send could be enhanced to preserve the
result of the packet parsing that is necessary for matching the
incoming UDP packets, so that this works does not have to be done
twice.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
This function is useful for checking that the question name is
uncompressed (as it should be).
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
During packet parsing, only the binary name is available. If the name
equality check is performed before conversion to text, we can sometimes
skip the last step.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
During package parsing, only the binary representation is available,
and it is convenient to check that directly for conformance with host
name requirements.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Redirect internal assertion failures to __libc_assert_fail, based on
based on __libc_message, which writes directly to STDERR_FILENO
and calls abort. Also disable message translation and reword the
error message slightly (adjusting stdlib/tst-bz20544 accordingly).
As a result of these changes, malloc no longer needs its own
redefinition of __assert_fail.
__libc_assert_fail needs to be stubbed out during rtld dependency
analysis because the rtld rebuilds turn __libc_assert_fail into
__assert_fail, which is unconditionally provided by elf/dl-minimal.c.
This change is not possible for the public assert macro and its
__assert_fail function because POSIX requires that the diagnostic
is written to stderr.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Since commit ec2c1fcefb ("malloc:
Abort on heap corruption, without a backtrace [BZ #21754]"),
__libc_message always terminates the process. Since commit
a289ea09ea ("Do not print backtraces
on fatal glibc errors"), the backtrace facility has been removed.
Therefore, remove enum __libc_message_action and the action
argument of __libc_message, and mark __libc_message as _No_return.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Rather than buffering 16 MiB of entropy in userspace (by way of
chacha20), simply call getrandom() every time.
This approach is doubtlessly slower, for now, but trying to prematurely
optimize arc4random appears to be leading toward all sorts of nasty
properties and gotchas. Instead, this patch takes a much more
conservative approach. The interface is added as a basic loop wrapper
around getrandom(), and then later, the kernel and libc together can
work together on optimizing that.
This prevents numerous issues in which userspace is unaware of when it
really must throw away its buffer, since we avoid buffering all
together. Future improvements may include userspace learning more from
the kernel about when to do that, which might make these sorts of
chacha20-based optimizations more possible. The current heuristic of 16
MiB is meaningless garbage that doesn't correspond to anything the
kernel might know about. So for now, let's just do something
conservative that we know is correct and won't lead to cryptographic
issues for users of this function.
This patch might be considered along the lines of, "optimization is the
root of all evil," in that the much more complex implementation it
replaces moves too fast without considering security implications,
whereas the incremental approach done here is a much safer way of going
about things. Once this lands, we can take our time in optimizing this
properly using new interplay between the kernel and userspace.
getrandom(0) is used, since that's the one that ensures the bytes
returned are cryptographically secure. But on systems without it, we
fallback to using /dev/urandom. This is unfortunate because it means
opening a file descriptor, but there's not much of a choice. Secondly,
as part of the fallback, in order to get more or less the same
properties of getrandom(0), we poll on /dev/random, and if the poll
succeeds at least once, then we assume the RNG is initialized. This is a
rough approximation, as the ancient "non-blocking pool" initialized
after the "blocking pool", not before, and it may not port back to all
ancient kernels, though it does to all kernels supported by glibc
(≥3.2), so generally it's the best approximation we can do.
The motivation for including arc4random, in the first place, is to have
source-level compatibility with existing code. That means this patch
doesn't attempt to litigate the interface itself. It does, however,
choose a conservative approach for implementing it.
Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Cristian Rodríguez <crrodriguez@opensuse.org>
Cc: Paul Eggert <eggert@cs.ucla.edu>
Cc: Mark Harris <mark.hsj@gmail.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The implementation is based on scalar Chacha20 with per-thread cache.
It uses getrandom or /dev/urandom as fallback to get the initial entropy,
and reseeds the internal state on every 16MB of consumed buffer.
To improve performance and lower memory consumption the per-thread cache
is allocated lazily on first arc4random functions call, and if the
memory allocation fails getentropy or /dev/urandom is used as fallback.
The cache is also cleared on thread exit iff it was initialized (so if
arc4random is not called it is not touched).
Although it is lock-free, arc4random is still not async-signal-safe
(the per thread state is not updated atomically).
The ChaCha20 implementation is based on RFC8439 [1], omitting the final
XOR of the keystream with the plaintext because the plaintext is a
stream of zeros. This strategy is similar to what OpenBSD arc4random
does.
The arc4random_uniform is based on previous work by Florian Weimer,
where the algorithm is based on Jérémie Lumbroso paper Optimal Discrete
Uniform Generation from Coin Flips, and Applications (2013) [2], who
credits Donald E. Knuth and Andrew C. Yao, The complexity of nonuniform
random number generation (1976), for solving the general case.
The main advantage of this method is the that the unit of randomness is not
the uniform random variable (uint32_t), but a random bit. It optimizes the
internal buffer sampling by initially consuming a 32-bit random variable
and then sampling byte per byte. Depending of the upper bound requested,
it might lead to better CPU utilization.
Checked on x86_64-linux-gnu, aarch64-linux, and powerpc64le-linux-gnu.
Co-authored-by: Florian Weimer <fweimer@redhat.com>
Reviewed-by: Yann Droneaud <ydroneaud@opteya.com>
[1] https://datatracker.ietf.org/doc/html/rfc8439
[2] https://arxiv.org/pdf/1304.1916.pdf