The libc version is identical and built with same flags. The libc
version is set as the default version.
The libpthread compat symbol requires to mask it when building the
loader object otherwise ld might complain about a missing
versioned symbol (as for alpha).
Checked on x86_64-linux-gnu.
The libc version is identical and built with same flags. Both aarch64
and nios2 also requires to export __send and tt was done previously with
the HAVE_INTERNAL_SEND_SYMBOL (which forced the symbol creation).
All __send callers are internal to libc and the original issue that
required the symbol export was due a missing libc_hidden_def. So
a compat symbol is added for __send and the libc_hidden_def is
defined regardless.
Checked on x86_64-linux-gnu and i686-linux-gnu.
This essentially folds compat_symbol_unique functionality into
compat_symbol.
This change eliminates the need for intermediate aliases for defining
multiple symbol versions, for both compat_symbol and versioned_symbol.
Some binutils versions do not suport multiple versions per symbol on
some targets, so aliases are automatically introduced, similar to what
compat_symbol_unique did. To reduce symbol table sizes, a configure
check is added to avoid these aliases if they are not needed.
The new mechanism works with data symbols as well as function symbols,
due to the way an assembler-level redirect is used. It is not
compatible with weak symbols for old binutils versions, which is why
the definition of __malloc_initialize_hook had to be changed. This
is not a loss of functionality because weak symbols do not matter
to dynamic linking.
The placeholder symbol needs repeating in nptl/libpthread-compat.c
now that compat_symbol is used, but that seems more obvious than
introducing yet another macro.
A subtle difference was that compat_symbol_unique made the symbol
global automatically. compat_symbol does not do this, so static
had to be removed from the definition of
__libpthread_version_placeholder.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The generic implementation basically handle the system agnostic logic
(filtering out the invalid signals) while the __libc_sigaction is
the function with implements the system and architecture bits.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Both htl and nptl uses a different data structure to implement atfork
handlers. The nptl one was refactored by 27761a1042 to use a dynarray
which simplifies the code.
This patch moves the nptl one to be the generic implementation and
replace Hurd linked one. Different than previous NPTL, Hurd also uses
a global lock, so performance should be similar.
Checked on x86_64-linux-gnu, i686-linux-gnu, and with a build for
i686-gnu.
The nptl already expects a Linux syscall internally. Also
__is_internal_signal is used and the DEBUGGING_P check is removed.
Checked on x86_64-linux-gnu.
This is another attempt at making pthread_once handle throwing exceptions
from the init routine callback. As the new testcases show, just switching
to the cleanup attribute based cleanup does fix the tst-once5 test, but
breaks the new tst-oncey3 test. That is because when throwing exceptions,
only the unwind info registered cleanups (i.e. C++ destructors or cleanup
attribute), when cancelling threads and there has been unwind info from the
cancellation point up to whatever needs cleanup both unwind info registered
cleanups and THREAD_SETMEM (self, cleanup, ...) registered cleanups are
invoked, but once we hit some frame with no unwind info, only the
THREAD_SETMEM (self, cleanup, ...) registered cleanups are invoked.
So, to stay fully backwards compatible (allow init routines without
unwind info which encounter cancellation points) and handle exception throwing
we actually need to register the pthread_once cleanups in both unwind info
and in the THREAD_SETMEM (self, cleanup, ...) way.
If an exception is thrown, only the former will happen and we in that case
need to also unregister the THREAD_SETMEM (self, cleanup, ...) registered
handler, because otherwise after catching the exception the user code could
call deeper into the stack some cancellation point, get cancelled and then
a stale cleanup handler would clobber stack and probably crash.
If a thread calling init routine is cancelled and unwind info ends before
the pthread_once frame, it will be cleaned up through self->cleanup as
before. And if unwind info is present, unwind_stop first calls the
self->cleanup registered handler for the frame, then it will call the
unwind info registered handler but that will already see __do_it == 0
and do nothing.
The elision interfaces are closely aligned between the targets that
implement them, so declare them in the generic <lowlevellock.h>
file.
Empty .c stubs are provided, so that fewer makefile updates
under sysdeps are needed. Also simplify initialization via
__libc_early_init.
The symbols __lll_clocklock_elision, __lll_lock_elision,
__lll_trylock_elision, __lll_unlock_elision, __pthread_force_elision
move into libc. For the time being, non-hidden references are used
from libpthread to access them, but once that part of libpthread
is moved into libc, hidden symbols will be used again. (Hidden
references seem desirable to reduce the likelihood of transactions
aborts.)
This moves __futex_abstimed_wait64 and
__futex_abstimed_wait_cancelable64 and exports these functions as
GLIBC_PRIVATE.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
And sort the lines lexicographically. This will make it easier to review
patches which move symbols from libpthread to libc.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The internal semaphore list code is moved to a specific file,
sem_routine.c, and the internal usage is simplified to only two
functions (one to insert a new semaphore and one to remove it
from the internal list). There is no need to expose the
internal locking, neither how the semaphore mapping is implemented.
No functional or semantic change is expected, tested on
x86_64-linux-gnu.
Previously, glibc would pick an arbitrary tmpfs file system from
/proc/mounts if /dev/shm was not available. This could lead to
an unsuitable file system being picked for the backing storage for
shm_open, sem_open, and related functions.
This patch introduces a new function, __shm_get_name, which builds
the file name under the appropriate (now hard-coded) directory. It is
called from the various shm_* and sem_* function. Unlike the
SHM_GET_NAME macro it replaces, the callers handle the return values
and errno updates. shm-directory.c is moved directly into the posix
subdirectory because it can be implemented directly using POSIX
functionality. It resides in libc because it is needed by both
librt and nptl/htl.
In the sem_open implementation, tmpfname is initialized directly
from a string constant. This happens to remove one alloca call.
Checked on x86_64-linux-gnu.
I've updated copyright dates in glibc for 2021. This is the patch for
the changes not generated by scripts/update-copyrights and subsequent
build / regeneration of generated files. As well as the usual annual
updates, mainly dates in --version output (minus csu/version.c which
previously had to be handled manually but is now successfully updated
by update-copyrights), there is a small change to the copyright notice
in NEWS which should let NEWS get updated automatically next year.
Please remember to include 2021 in the dates for any new files added
in future (which means updating any existing uncommitted patches you
have that add new files to use the new copyright dates in them).
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
The earlier implementation of this, __lll_clocklock, calls lll_clockwait
that doesn't return the futex syscall error codes. It always tries again
if that fails.
However in the current implementation, when the futex returns EAGAIN,
__futex_clocklock64 will also return EGAIN, even if the futex is taken.
This patch fixes the EAGAIN issue and also adds a check for EINTR. As
futex syscall can return EINTR if the thread is interrupted by a signal.
In this case I'm assuming the function should continue trying to lock as
there is no mention to about it on POSIX. Also add a test for both
scenarios.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The aio_suspend function has been converted to support 64 bit time.
This change uses (in aio_misc.h):
- __futex_abstimed_wait64 (instead of futex_reltimed_wait)
- __futex_abstimed_wait_cancellable64
(instead of futex_reltimed_wait_cancellable)
from ./sysdeps/nptl/futex-helpers.h
The aio_suspend() accepts relative timeout, which then is converted to
absolute one.
The i686-gnu port (HURD) do not define DONT_NEED_AIO_MISC_COND and as it
doesn't (yet) support 64 bit time it uses not converted
pthread_cond_timedwait().
The __aio_suspend() is supposed to be run on ports with __TIMESIZE !=64 and
__WORDSIZE==32. It internally utilizes __aio_suspend_time64() and hence the
conversion from 32 bit struct timespec to 64 bit one is required.
For ports supporting 64 bit time the __aio_suspend_time64() will be used
either via alias (to __aio_suspend when __TIMESIZE==64) or redirection
(when -D_TIME_BITS=64 is passed).
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Some futex-internal calls require additional check for EOVERFLOW (as
indicated by [1] [2] [3]). For both mutex and rwlock code, EOVERFLOW is
handle as ETIMEDOUT; since it indicate to the caller that the blocking
operation could not be issued.
For mutex it avoids a possible issue where PTHREAD_MUTEX_ROBUST_* might
assume EOVERFLOW indicate futex has succeed, and for PTHREAD_MUTEX_PP_*
it avoid a potential busy infinite loop. For rwlock and semaphores, it
also avoids potential busy infinite loops.
Checked on x86_64-linux-gnu and i686-linux-gnu, although EOVERFLOW
won't be possible with current usage (since all timeouts on 32-bit
architectures with 32-bit time_t support will be in the range of
32-bit time_t).
[1] https://sourceware.org/pipermail/libc-alpha/2020-November/120079.html
[2] https://sourceware.org/pipermail/libc-alpha/2020-November/120080.html
[3] https://sourceware.org/pipermail/libc-alpha/2020-November/120127.html
The 878fe624d4 changed lll_futex_timed_wait, which expects a relative
timeout, with a __futex_abstimed_wait64, which expects an absolute
timeout. However the code still passes a relative timeout.
Also, the PTHREAD_PRIO_PROTECT support for clocks different than
CLOCK_REALTIME was broken since the inclusion of
pthread_mutex_clocklock (9d20e22e46) since lll_futex_timed_wait
always use CLOCK_REALTIME.
This patch fixes by removing the relative time calculation. It
also adds some xtests that tests both thread and inter-process
usage.
Checked on x86_64-linux-gnu.
The align the GNU extension with the others one that accept specify
which clock to wait for (such as pthread_mutex_clocklock).
Check on x86_64-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Linux futex FUTEX_LOCK_PI operation only supports CLOCK_REALTIME,
so pthread_mutex_clocklock operation with priority aware mutexes
may fail depending of the input timeout.
Also, it is not possible to convert a CLOCK_MONOTONIC to a
CLOCK_REALTIME due the possible wall clock time change which might
invalid the requested timeout.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The idea is to make NPTL implementation to use on the functions
provided by futex-internal.h.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>