C2X standardizes strftime %Ob and %OB support. This patch updates the
glibc manual to say these are C2X features, while noting that the
details of what is the alternative form of a month name are not
specified in C2X.
Note: C2X seems unclear to me about whether %h being equivalent to %b
means %Oh is thereby allowed and equivalent to %Ob; I've asked WG14.
Tested with "make info" and "make pdf".
* manual/time.texi (strftime): Document %Ob and %OB as C2X
features.
The current default nsswitch.conf file provided by glibc is not very
distribution friendly. The file contains some minimal directives that no
real distribution uses. This update aims to provide a rich set of
comments which are useful for all distributions, and a broader set of
service defines which should work for all distributions.
Tested defaults on x86_64 and they work. The nsswitch.conf file more
closely matches what we have in Fedora now, and I'll adjust Fedora to
use this version with minor changes to enable Fedora-specific service
providers.
v2
- Add missing databases to manual.
- Add link to manual from default nsswitch.conf.
- Sort nsswitch.conf according to most used database first.
v3
- Only mention implemented services in 'NSS Basics.'
- Mention 'automount' in 'Services in the NSS configuration.'
- Sort services in alphabetical order.
v4
- Project name is 'Samba'.
v5
- Fix typo in manual/nss.texi.
v6
- Fix another typo in manual/nss.texi. Ran spell checker this time.
The resolution of C floating-point Clarification Request 25
<http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2397.htm#dr_25> is
that the totalorder and totalordermag functions should take pointer
arguments, and this has been adopted in C2X (with const added; note
that the integration of this change into C2X is present in the C
standard git repository but postdates the most recent public PDF
draft).
This patch updates glibc accordingly. As a defect resolution, the API
is changed unconditionally rather than supporting any sort of TS
18661-1 mode for compilation with the old version of the API. There
are compat symbols for existing binaries that pass floating-point
arguments directly. As a consequence of changing to pointer
arguments, there are no longer type-generic macros in tgmath.h for
these functions.
Because of the fairly complicated logic for creating libm function
aliases and determining the set of aliases to create in a given glibc
configuration, rather than duplicating all that in individual source
files to create the versioned and compat symbols, the source files for
the various versions of totalorder functions are set up to redefine
weak_alias before using libm_alias_* macros to create the symbols
required. In turn, this requires creating a separate alias for each
symbol version pointing to the same implementation (see binutils bug
<https://sourceware.org/bugzilla/show_bug.cgi?id=23840>), which is
done automatically using __COUNTER__. (As I noted in
<https://sourceware.org/ml/libc-alpha/2018-10/msg00631.html>, it might
well make sense for glibc's symbol versioning macros to do that alias
creation with __COUNTER__ themselves, which would somewhat simplify
the logic in the totalorder source files.)
It is of course desirable to test the compat symbols. I did this with
the generic libm-test machinery, but didn't wish to duplicate the
actual tables of test inputs and outputs, and thought it risky to
attempt to have a single object file refer to both default and compat
versions of the same function in order to test them together. Thus, I
created libm-test-compat_totalorder.inc and
libm-test-compat_totalordermag.inc which include the generated .c
files (with the processed version of those tables of inputs) from the
non-compat tests, and added appropriate dependencies. I think this
provides sufficient test coverage for the compat symbols without also
needing to make the special ldbl-96 and ldbl-128ibm tests (of
peculiarities relating to the representations of those formats that
can't be covered in the generic tests) run for the compat symbols.
Tests of compat symbols need to be internal tests, meaning _ISOMAC is
not defined. Making some libm-test tests into internal tests showed
up two other issues. GCC diagnoses duplicate macro definitions of
__STDC_* macros, including __STDC_WANT_IEC_60559_TYPES_EXT__; I added
an appropriate conditional and filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91451> for this issue.
On ia64, include/setjmp.h ends up getting included indirectly from
libm-symbols.h, resulting in conflicting definitions of the STR macro
(also defined in libm-test-driver.c); I renamed the macros in
include/setjmp.h. (It's arguable that we should have common internal
headers used everywhere for stringizing and concatenation macros.)
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/bits/mathcalls.h
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalorder): Take pointer arguments.
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalordermag): Likewise.
* manual/arith.texi (totalorder): Likewise.
(totalorderf): Likewise.
(totalorderl): Likewise.
(totalorderfN): Likewise.
(totalorderfNx): Likewise.
(totalordermag): Likewise.
(totalordermagf): Likewise.
(totalordermagl): Likewise.
(totalordermagfN): Likewise.
(totalordermagfNx): Likewise.
* math/tgmath.h (__TGMATH_BINARY_REAL_RET_ONLY): Remove macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalordermag): Likewise.
* math/Versions (GLIBC_2.31): Add totalorder, totalorderf,
totalorderl, totalordermag, totalordermagf, totalordermagl,
totalorderf32, totalorderf64, totalorderf32x, totalordermagf32,
totalordermagf64, totalordermagf32x, totalorderf64x,
totalordermagf64x, totalorderf128 and totalordermagf128.
* math/Makefile (libm-test-funcs-noauto): Add compat_totalorder
and compat_totalordermag.
(libm-test-funcs-compat): New variable.
(libm-tests-compat): Likewise.
(tests): Do not include compat tests.
(tests-internal): Add compat tests.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalorder.o)): Depend
on $(objpfx)libm-test-totalorder.c.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalordermag.o): Depend on
$(objpfx)libm-test-totalordermag.c.
(tgmath3-macros): Remove totalorder and totalordermag.
* math/libm-test-compat_totalorder.inc: New file.
* math/libm-test-compat_totalordermag.inc: Likewise.
* math/libm-test-driver.c (struct test_ff_i_data): Update comment.
(RUN_TEST_fpfp_b): New macro.
(RUN_TEST_LOOP_fpfp_b): Likewise.
* math/libm-test-totalorder.inc (totalorder_test_data): Use
TEST_fpfp_b.
(totalorder_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/libm-test-totalordermag.inc (totalordermag_test_data): Use
TEST_fpfp_b.
(totalordermag_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/gen-tgmath-tests.py (Tests.add_all_tests): Remove
totalorder and totalordermag.
* math/test-tgmath.c (NCALLS): Change to 132.
(F(compile_test)): Do not call totalorder or totalordermag.
(F(totalorder)): Remove.
(F(totalordermag)): Likewise.
* include/float.h (__STDC_WANT_IEC_60559_TYPES_EXT__): Do not
define if [__STDC_WANT_IEC_60559_TYPES_EXT__].
* include/setjmp.h [!_ISOMAC] (STR_HELPER): Rename to
SJSTR_HELPER.
[!_ISOMAC] (STR): Rename to SJSTR. Update call to STR_HELPER.
[!_ISOMAC] (TEST_SIZE): Update call to STR.
[!_ISOMAC] (TEST_ALIGN): Likewise.
[!_ISOMAC] (TEST_OFFSET): Likewise.
* sysdeps/ieee754/dbl-64/s_totalorder.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/float128/float128_private.h
(__totalorder_compatl): New macro.
(__totalordermag_compatl): Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorderf): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagf): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Include
<shlib-compat.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Include
<shlib-compat.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c (totalorderl): Take
pointer arguments.
* sysdeps/ieee754/ldbl-opt/nldbl-totalordermag.c (totalordermagl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c
(do_test): Update calls to totalorderl and totalordermagl.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c (do_test):
Update calls to totalorderl and totalordermagl.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/csky/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
This patch starts preparation for C2X support in glibc headers by
adding a feature test macro _ISOC2X_SOURCE and corresponding
__GLIBC_USE (ISOC2X). (I chose to use the newer __GLIBC_USE style for
this rather than the older __USE_* macros tested with #ifdef.) As
with other such macros, C2X features are also enabled by compiling for
a standard newer than C17, or by using _GNU_SOURCE.
This patch does not itself enable anything new in the headers for C2X;
that is to be done in followup patches. (For example, most of the TS
18661-1 functions should be declared for C2X without any
__STDC_WANT_IEC_60559_BFP_EXT__ being needed, but the ones that
18661-1 adds to Annex F because of their close relation to IEEE 754
formats do still need the WANT macro in C2X.)
Once C2X becomes an actual standard we'll presumably move to using the
actual year in the feature test macro and __GLIBC_USE, with some
period when both macro spellings are accepted, as was done with
_ISOC9X_SOURCE.
Tested for x86_64.
* include/features.h (_ISOC2X_SOURCE): New feature test macro.
Undefine and define to 1 if [_GNU_SOURCE].
(__GLIBC_USE_ISOC2X): New macro. Undefine and redefine depending
on [_ISOC2X_SOURCE] and [__STDC_VERSION__ > 201710L].
(__USE_ISOC11): Also define to 1 if [_ISOC2X_SOURCE].
(__USE_ISOC99): Likewise.
(__USE_ISOC95): Likewise.
* manual/creature.texi (_ISOC2X_SOURCE): Document.
There is just one file-based implementation, so this dispatch
mechanism is unnecessary. Instead of the vtable pointer
__libc_utmp_jump_table, use a non-negative file_fd as the indicator
that the backend is initialized.
Add:
int pthread_rwlock_clockrdlock (pthread_rwlock_t *rwlock,
clockid_t clockid,
const struct timespec *abstime)
and:
int pthread_rwlock_clockwrlock (pthread_rwlock_t *rwlock,
clockid_t clockid,
const struct timespec *abstime)
which behave like pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock respectively, except they always measure
abstime against the supplied clockid. The functions currently support
CLOCK_REALTIME and CLOCK_MONOTONIC and return EINVAL if any other
clock is specified.
* sysdeps/nptl/pthread.h: Add pthread_rwlock_clockrdlock and
pthread_wrlock_clockwrlock.
* nptl/Makefile: Build pthread_rwlock_clockrdlock.c and
pthread_rwlock_clockwrlock.c.
* nptl/pthread_rwlock_clockrdlock.c: Implement
pthread_rwlock_clockrdlock.
* nptl/pthread_rwlock_clockwrlock.c: Implement
pthread_rwlock_clockwrlock.
* nptl/pthread_rwlock_common.c (__pthread_rwlock_rdlock_full): Add
clockid parameter and verify that it indicates a supported clock on
entry so that we fail even if it doesn't end up being used. Pass
that clock on to futex_abstimed_wait when necessary.
(__pthread_rwlock_wrlock_full): Likewise.
* nptl/pthread_rwlock_rdlock.c: (__pthread_rwlock_rdlock): Pass
CLOCK_REALTIME to __pthread_rwlock_rdlock_full even though it won't
be used because there's no timeout.
* nptl/pthread_rwlock_wrlock.c (__pthread_rwlock_wrlock): Pass
CLOCK_REALTIME to __pthread_rwlock_wrlock_full even though it won't
be used because there is no timeout.
* nptl/pthread_rwlock_timedrdlock.c (pthread_rwlock_timedrdlock):
Pass CLOCK_REALTIME to __pthread_rwlock_rdlock_full since abstime
uses that clock.
* nptl/pthread_rwlock_timedwrlock.c (pthread_rwlock_timedwrlock):
Pass CLOCK_REALTIME to __pthread_rwlock_wrlock_full since abstime
uses that clock.
* sysdeps/unix/sysv/linux/aarch64/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/alpha/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/arm/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/csky/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/hppa/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/i386/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/ia64/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/microblaze/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/nios2/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sh/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libpthread.abilist
(GLIBC_2.30): Likewise.
* nptl/tst-abstime.c (th): Add pthread_rwlock_clockrdlock and
pthread_rwlock_clockwrlock timeout tests to match the existing
pthread_rwlock_timedrdloock and pthread_rwlock_timedwrlock tests.
* nptl/tst-rwlock14.c (do_test): Likewise.
* nptl/tst-rwlock6.c Invent verbose_printf macro, and use for
ancillary output throughout. (tf): Accept thread_args structure so
that rwlock, a clockid and function name can be passed to the
thread. (do_test_clock): Rename from do_test. Accept clockid
parameter to specify test clock. Use the magic clockid value of
CLOCK_USE_TIMEDLOCK to indicate that pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock should be tested, otherwise pass the
specified clockid to pthread_rwlock_clockrdlock and
pthread_rwlock_clockwrlock. Use xpthread_create and xpthread_join.
(do_test): Call do_test_clock to test each clockid in turn.
* nptl/tst-rwlock7.c: Likewise.
* nptl/tst-rwlock9.c (writer_thread, reader_thread): Accept
thread_args structure so that the (now int) thread number, the
clockid and the function name can be passed to the thread.
(do_test_clock): Renamed from do_test. Pass the necessary
thread_args when creating the reader and writer threads. Use
xpthread_create and xpthread_join.
(do_test): Call do_test_clock to test each clockid in turn.
* manual/threads.texi: Add documentation for
pthread_rwlock_clockrdlock and pthread_rwlock_clockwrclock.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add:
int pthread_cond_clockwait (pthread_cond_t *cond,
pthread_mutex_t *mutex,
clockid_t clockid,
const struct timespec *abstime)
which behaves just like pthread_cond_timedwait except it always measures
abstime against the supplied clockid. Currently supports CLOCK_REALTIME
and
CLOCK_MONOTONIC and returns EINVAL if any other clock is specified.
Includes feedback from many others. This function was originally
proposed[1] as pthread_cond_timedwaitonclock_np, but The Austin Group
preferred the new name.
* nptl/Makefile: Add tst-cond26 and tst-cond27
* nptl/Versions (GLIBC_2.30): Add pthread_cond_clockwait
* sysdeps/nptl/pthread.h: Likewise
* nptl/forward.c: Add __pthread_cond_clockwait
* nptl/forward.c: Likewise
* nptl/pthreadP.h: Likewise
* sysdeps/nptl/pthread-functions.h: Likewise
* nptl/pthread_cond_wait.c (__pthread_cond_wait_common): Add
clockid parameter and comment describing why we don't need to
check
its value. Use that value when calling
futex_abstimed_wait_cancelable rather than reading the clock
from
the flags. (__pthread_cond_wait): Pass unused clockid parameter.
(__pthread_cond_timedwait): Read clock from flags and pass it to
__pthread_cond_wait_common. (__pthread_cond_clockwait): Add new
function with weak alias from pthread_cond_clockwait.
* sysdeps/mach/hurd/i386/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/aarch64/libpthread.abilist
* (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/alpha/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/arm/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/csky/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/hppa/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/i386/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/ia64/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/microblaze/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/nios2/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sh/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libpthread.abilist
(GLIBC_2.30): Likewise.
* nptl/tst-cond11.c (run_test): Support testing
pthread_cond_clockwait too by using a special magic
CLOCK_USE_ATTR_CLOCK value to determine whether to call
pthread_cond_timedwait or pthread_cond_clockwait. (do_test):
Pass
CLOCK_USE_ATTR_CLOCK for existing tests, and add new tests using
all combinations of CLOCK_MONOTONIC and CLOCK_REALTIME.
* ntpl/tst-cond26.c: New test for passing unsupported and
* invalid
clocks to pthread_cond_clockwait.
* nptl/tst-cond27.c: Add test similar to tst-cond5.c, but using
struct timespec and pthread_cond_clockwait.
* manual/threads.texi: Document pthread_cond_clockwait. The
* comment
was provided by Carlos O'Donell.
[1] https://sourceware.org/ml/libc-alpha/2015-07/msg00193.html
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The kernel is evolving this interface (e.g., removal of the
restriction on cross-device copies), and keeping up with that
is difficult. Applications which need the function should
run kernels which support the system call instead of relying on
the imperfect glibc emulation.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
No 32-bit system call wrapper is added because the interface
is problematic because it cannot deal with 64-bit inode numbers
and 64-bit directory hashes.
A future commit will deprecate the undocumented getdirentries
and getdirentries64 functions.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Change the tcache->counts[] entries to uint16_t - this removes
the limit set by char and allows a larger tcache. Remove a few
redundant asserts.
bench-malloc-thread with 4 threads is ~15% faster on Cortex-A72.
Reviewed-by: DJ Delorie <dj@redhat.com>
* malloc/malloc.c (MAX_TCACHE_COUNT): Increase to UINT16_MAX.
(tcache_put): Remove redundant assert.
(tcache_get): Remove redundant asserts.
(__libc_malloc): Check tcache count is not zero.
* manual/tunables.texi (glibc.malloc.tcache_count): Update maximum.
The tgkill function is sometimes used in crash handlers.
<bits/signal_ext.h> follows the same approach as <bits/unistd_ext.h>
(which was added for the gettid system call wrapper).
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The tcache counts[] array is a char, which has a very small range and thus
may overflow. When setting tcache_count tunable, there is no overflow check.
However the tunable must not be larger than the maximum value of the tcache
counts[] array, otherwise it can overflow when filling the tcache.
[BZ #24531]
* malloc/malloc.c (MAX_TCACHE_COUNT): New define.
(do_set_tcache_count): Only update if count is small enough.
* manual/tunables.texi (glibc.malloc.tcache_count): Document max value.
The twalk function is very difficult to use in a multi-threaded
program because there is no way to pass external state to the
iterator function.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Commit 2d6ab5df3b ("Document and fix
--enable-bind-now [BZ #21015]") extended BIND_NOW to all installed
shared objects. This change also covers installed programs.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The stub implementations are turned into compat symbols.
Linux actually has two reserved system call numbers (for getpmsg
and putpmsg), but these system calls have never been implemented,
and there are no plans to implement them, so this patch replaces
the wrappers with the generic stubs.
According to <https://bugzilla.redhat.com/show_bug.cgi?id=436349>,
the presence of the XSI STREAMS declarations is a minor portability
hazard because they are not actually implemented.
This commit does not change the TIRPC support code in
sunrpc/rpc_svcout.c. It uses additional XTI functionality and
therefore never worked with glibc.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This commit adds gettid to <unistd.h> on Linux, and not to the
kernel-independent GNU API.
gettid is now supportable on Linux because too many things assume a
1:1 mapping between libpthread threads and kernel threads.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
On Linux, we define _POSIX_PRIORITY_SCHEDULING, but functions such
as sched_setparam and sched_setscheduler apply to individual threads,
not processes.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
As discussed during development for glibc 2.29, when we increased the
required minimum GCC version for building glibc to GCC 5, working
purely based on the times at which such requirements have been
increased in the past it would be appropriate for glibc 2.30 to
require GCC 6 (matching GCC 4.9 having been required for glibc 2.26).
Naming 6.2 specifically as the minimum version then means a separate
version requirement no longer needs to be specified for powerpc64le.
Thus, this patch increases the minimum to 6.2, removing the
documentation of the separate requirement for powerpc64le. It does
not remove the powerpc64le configure test, or any __GNUC_PREREQ that
could be removed as not being in installed headers or files shared
with gnulib; I think such cleanups are best done separately.
Tested for x86_64.
* configure.ac (libc_cv_compiler_ok): Require GCC 6.2 or later.
* configure: Regenerated.
* manual/install.texi (Tools for Compilation): Update minimum GCC
version.
* INSTALL: Regenerated.
Emag is a 64-bit CPU core released by AmpereComputing.
Add its name to cpu list, and corresponding macro as utilities for
later IFUNC dispatch.
* manual/tunables.texi (Tunable glibc.cpu.name): Add emag.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (cpu_list):
Add emag.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_EMAG):
New macro.
* NEWS: Add the list of bugs fixed in 2.29.
* manual/contrib.texi: Update contributors list with some more
names.
* manual/install.texi: Update latest versions of packages
tested.
* INSTALL: Regenerated.
The full representation of the alternative calendar year (%EY)
typically includes an internal use of "%Ey". As a GNU extension,
apply any flags on "%EY" (e.g. "%_EY", "%-EY") to the internal "%Ey",
allowing users of "%EY" to control how the year is padded.
Reviewed-by: Rafal Luzynski <digitalfreak@lingonborough.com>
Reviewed-by: Zack Weinberg <zackw@panix.com>
ChangeLog:
[BZ #24096]
* manual/time.texi (strftime): Document "%EC" and "%EY".
* time/Makefile (tests): Add tst-strftime2.
(LOCALES): Add ja_JP.UTF-8, lo_LA.UTF-8, and th_TH.UTF-8.
* time/strftime_l.c (__strftime_internal): Add argument yr_spec to
override padding for "%Ey".
If an optional flag ('_' or '-') is specified to "%EY", interpret the
"%Ey" in the subformat as if decorated with that flag.
* time/tst-strftime2.c: New file.
In Japanese locales, strftime's alternative year format (%Ey) produces
a year numbered within a time period called an _era_. A new era
typically begins when a new emperor is enthroned. The result of "%Ey"
is therefore usually a one- or two-digit number.
Many programs that display Japanese era dates assume that the era year
is two digits wide. To improve how these programs display dates
during the first nine years of a new era, change "%Ey" to pad one-
digit numbers on the left with a zero. This change applies to all
locales. It is expected to be harmless for other locales that use the
alternative year format (e.g. lo_LA and th_TH, in which "%Ey" produces
the year of the Buddhist calendar) as those calendars' year numbers
are already more than two digits wide, and this is not expected to
change.
This change needs to be in place before 2019-05-01 CE, as a new era is
scheduled to begin on that date.
Reviewed-by: Zack Weinberg <zackw@panix.com>
Reviewed-by: Rafal Luzynski <digitalfreak@lingonborough.com>
ChangeLog:
[BZ #23758]
* manual/time.texi (strftime): Document "%Ey".
* time/strftime_l.c (__strftime_internal): Set the default width
padding with zero of "%Ey" to 2.
Add Ares to the midr_el0 list and support ifunc dispatch. Since Ares
supports 2 128-bit loads/stores, use Neon registers for memcpy by
selecting __memcpy_falkor by default (we should rename this to
__memcpy_simd or similar).
* manual/tunables.texi (glibc.cpu.name): Add ares tunable.
* sysdeps/aarch64/multiarch/memcpy.c (__libc_memcpy): Use
__memcpy_falkor for ares.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_ARES):
Add new define.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (cpu_list):
Add ares cpu.
@var is intended for placeholders (such as function parameters).
Actual variables need to use @code because @var causes upper-case
output, resulting in a different C identifier.
This patch updates some miscellaneous files from their upstream
sources (thereby bringing in copyright date updates for some of those
files).
Tested for x86_64, including "make pdf".
* manual/texinfo.tex: Update to version 2018-12-28.17 with
trailing whitespace removed.
* scripts/config.guess: Update to version 2019-01-01.
* scripts/config.sub: Update to version 2019-01-01.
* scripts/move-if-change: Update from gnulib.
We know that building glibc with GCC 4.9 is broken on various
platforms (bug 23993). As it's more than a year since we last
increased the minimum GCC version to build glibc, this patch changes
the requirement to be GCC 5 or later (indeed, based on 4.9 having been
required for building 2.26, it would be consistent in terms of timing
to require GCC 6 or later from the 2.30 release onwards). It
deliberately just updates the configure test and corresponding
documentation, leaving removal of no-longer-needed __GNUC_PREREQ tests
for a separate patch.
In the NEWS entry, the requirement for a newer GCC version for
powerpc64le is reiterated (as in the entry for the 4.9 requirement in
2.26) to avoid suggesting the version requirement there has gone down.
(If that version goes up further as part of support for binary128 long
double, of course the wording would change at that time.)
Tested for x86_64.
[BZ #23993]
* configure.ac (libc_cv_compiler_ok): Require GCC 5 or later.
* configure: Regenerated.
* manual/install.texi (Tools for Compilation): Update minimum GCC
version.
* INSTALL: Regenerated.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__localtime64): Add.
* manual/maint.texi: Document Y2038 symbol handling.
* time/localtime.c
(__localtime64): Add.
[__TIMERSIZE != 64] (__localtime): Turn into a wrapper.
This patch eliminates the gen-py-const.awk variant of gen-as-const,
switching to use of gnu-as-const.py (with a new --python option) to
process .pysym files (i.e., to generate nptl_lock_constants.py), as
the syntax of those files is identical to that of .sym files.
Note that the generated nptl_lock_constants.py is *not* identical to
the version generated by the awk script. Apart from the trivial
changes (comment referencing the new script, and output being sorted),
the constant FUTEX_WAITERS, PTHREAD_MUTEXATTR_FLAG_BITS,
PTHREAD_MUTEXATTR_FLAG_PSHARED and PTHREAD_MUTEX_PRIO_CEILING_MASK are
now output as positive rather than negative constants (on x86_64
anyway; maybe not necessarily on 32-bit systems):
< FUTEX_WAITERS = -2147483648
---
> FUTEX_WAITERS = 2147483648
< PTHREAD_MUTEXATTR_FLAG_BITS = -251662336
< PTHREAD_MUTEXATTR_FLAG_PSHARED = -2147483648
---
> PTHREAD_MUTEXATTR_FLAG_BITS = 4043304960
> PTHREAD_MUTEXATTR_FLAG_PSHARED = 2147483648
< PTHREAD_MUTEX_PRIO_CEILING_MASK = -524288
---
> PTHREAD_MUTEX_PRIO_CEILING_MASK = 4294443008
This is because gen-as-const has a cast of the constant value to long
int, which gen-py-const lacks.
I think the positive values are more logically correct, since the
constants in question are in fact unsigned in C. But to reliably
produce gen-as-const.py output for constants that always (in C and
Python) reflects the signedness of values with the high bit of "long
int" set would mean more complicated logic needs to be used in
computing values.
The more correct positive values by themselves produce a failure of
nptl/test-mutexattr-printers, because masking with
~PTHREAD_MUTEXATTR_FLAG_BITS & ~PTHREAD_MUTEX_NO_ELISION_NP now leaves
a bit -1 << 32 in the Python value, resulting in a KeyError exception.
To avoid that, places masking with ~ of one of the constants in
question are changed to mask with 0xffffffff as well (this reflects
how ~ in Python applies to an infinite-precision integer whereas ~ in
C does not do any promotions beyond the width of int).
Tested for x86_64.
* scripts/gen-as-const.py (main): Handle --python option.
* scripts/gen-py-const.awk: Remove.
* Makerules (py-const-script): Use gen-as-const.py.
($(py-const)): Likewise.
* nptl/nptl-printers.py (MutexPrinter.read_status_no_robust): Mask
with 0xffffffff together with ~(PTHREAD_MUTEX_PRIO_CEILING_MASK).
(MutexAttributesPrinter.read_values): Mask with 0xffffffff
together with ~PTHREAD_MUTEXATTR_FLAG_BITS and
~PTHREAD_MUTEX_NO_ELISION_NP.
* manual/README.pretty-printers: Update reference to
gen-py-const.awk.
This patch updates various miscellaneous files from their upstream
sources.
Tested for x86_64, including "make pdf".
* manual/texinfo.tex: Update to version 2018-09-21.20 with
trailing whitespace removed.
* scripts/config.guess: Update to version 2018-11-28.
* scripts/config.sub: Update to version 2018-11-28.
* scripts/install-sh: Update to version 2018-03-11.20.
* scripts/mkinstalldirs: Update to version 2018-03-07.03.
* scripts/move-if-change: Update to version 2018-03-07 03:47.
This patch does not have any functionality change, we only provide a spin
count tunes for pthread adaptive spin mutex. The tunable
glibc.pthread.mutex_spin_count tunes can be used by system administrator to
squeeze system performance according to different hardware capabilities and
workload characteristics.
The maximum value of spin count is limited to 32767 to avoid the overflow
of mutex->__data.__spins variable with the possible type of short in
pthread_mutex_lock ().
The default value of spin count is set to 100 with the reference to the
previous number of times of spinning via trylock. This value would be
architecture-specific and can be tuned with kinds of benchmarks to fit most
cases in future.
I would extend my appreciation sincerely to H.J.Lu for his help to refine
this patch series.
* manual/tunables.texi (POSIX Thread Tunables): New node.
* nptl/Makefile (libpthread-routines): Add pthread_mutex_conf.
* nptl/nptl-init.c: Include pthread_mutex_conf.h
(__pthread_initialize_minimal_internal) [HAVE_TUNABLES]: Call
__pthread_tunables_init.
* nptl/pthreadP.h (MAX_ADAPTIVE_COUNT): Remove.
(max_adaptive_count): Define.
* nptl/pthread_mutex_conf.c: New file.
* nptl/pthread_mutex_conf.h: New file.
* sysdeps/generic/adaptive_spin_count.h: New file.
* sysdeps/nptl/dl-tunables.list: New file.
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock): Use
max_adaptive_count () not MAX_ADAPTIVE_COUNT.
* nptl/pthread_mutex_timedlock.c (__pthrad_mutex_timedlock):
Likewise.
Suggested-by: Andi Kleen <andi.kleen@intel.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Signed-off-by: Kemi.wang <kemi.wang@intel.com>
On platforms where long double used to have the same format as double,
but later switched to a different format (alpha, s390, sparc, and
powerpc), accessing the older behavior is possible and it happens via
__nldbl_* functions (not on the API, but accessible from header
redirection and from compat symbols). These functions write to the
global flag __ldbl_is_dbl, which tells other functions that long double
variables should be handled as double. This patch takes the first step
towards removing this global flag and creates __vstrfmon_l_internal,
which takes an explicit flags parameter.
This change arguably makes the generated code slightly worse on
architectures where __ldbl_is_dbl is never true; right now, on those
architectures, it's a compile-time constant; after this change, the
compiler could theoretically prove that __vstrfmon_l_internal was
never called with a nonzero flags argument, but it would probably need
LTO to do it. This is not performance critical code and I tend to
think that the maintainability benefits of removing action at a
distance are worth it. However, we _could_ wrap the runtime flag
check with a macro that was defined to ignore its argument and always
return false on architectures where __ldbl_is_dbl is never true, if
people think the codegen benefits are important.
Tested for powerpc and powerpc64le.