memset with zero as the value to set is by far the majority value (99%+
for Python3 and GCC). Add bench-memset-zero-large.c,
bench-memset-zero-walk.c and bench-memset-zero.c to measure memset
implementations for zeroing.
Reviewed-by: Sunil K Pandey <skpgkp2@gmail.com>
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 7061 files FOO.
I then removed trailing white space from math/tgmath.h,
support/tst-support-open-dev-null-range.c, and
sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following
obscure pre-commit check failure diagnostics from Savannah. I don't
know why I run into these diagnostics whereas others evidently do not.
remote: *** 912-#endif
remote: *** 913:
remote: *** 914-
remote: *** error: lines with trailing whitespace found
...
remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
Based on random input arguments. About 85% tuples have exponents
of the two arguments close together (+-1 range).
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
Add acosf function to bench-math and copy acosf-inputs to benchtests.
Motivation for this patch is to prepare for upcoming libmvec new
functions. Float and double version of libmvec functions stays
together.
acosf-inputs file generated from acos-inputs file using following
scaling formula:
f = d * (FLT_MAX/DBL_MAX)
Where d is input(double) and f is output(float). If scaled float value
is duplicate in new input file, nextafterf() function used to find next
float value, ensuring no duplicates.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
No bug. This commit adds __memcmpeq benchmarks. The benchmarks just
use the existing ones in memcmp. This will be useful for testing
implementations of __memcmpeq that do not just alias memcmp.
Building benchmarks as static executables:
=========================================
To build benchmarks as static executables, on the build system, run:
$ make STATIC-BENCHTESTS=yes bench-build
You can copy benchmark executables to another machine and run them
without copying the source nor build directories.
These workload traces cover the whole "long double" range.
This patch was prepared with the help of Adhemerval Zanella.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch adds workload traces for all double format functions where such
files are missing. For each function, a set of 1000 random values is
generated at random using SageMath, such that the output values are
meaningful (for example avoiding too large inputs for exp10 where the
output would be +Inf). More details about the generated values are
given at the beginning of each file.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Since commit 2682695e5c, `make bench-build' with `--enable-static-pie'
fails due to bench-timing-type being incorrectly built with MODULE_NAME
set to `libc'. This commit sets MODULE_NAME to nonlib, thus fixing the
build failure.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
Performance benchmarks for various posix locks: mutex, rwlock,
spinlock, condvar, and semaphore. Each test is performed with
an empty loop body or with a computationally "interesting" (i.e.
difficult to optimize away, and used just to allow lock code to
be "hidden" in the filler's CPU cycles).
__float128 is a non-standard name and is not available on some architectures
(like aarch64 or s390x) even though they may support the standard _Float128
type. Other architectures (like armv7) don't support quad-precision
floating-point operations at all.
This commit replaces benchtests references to __float128 with _Float128 and
runs the corresponding tests only on architectures that support it.
commit 7621e38bf3
Author: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Date: Tue Jan 29 17:43:45 2019 +0000
Add generic hp-timing support
removed the clock_gettime option. Restore the clock_gettime option for
some x86 CPUs on which value from RDTSC may not be incremented at a fixed
rate.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* benchtests/Makefile (bench-math): Add logb.
* benchtests/logb-inputs: New file.
* benchtests/logbf-inputs: New file.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Inputs are based on argument reductions from generic and powerpc
implementation.
* benchtests/Makefile (bench-math): Add hypot.
* benchtests/hypot-inputs: New file.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
* benchtests/Makefile (bench-math): Add isnan, isinf, and isfinite.
(CFLAGS-bench-isnan.c, CFLAGS-bench-isinf.c,
CFLAGS-bench-isfinite.c): New rule.
* benchtests/isnan-input: New file.
* benchtests/isinf-input: New file.
* benchtests/isfinite-input: New file.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Benchmarks should reflect distribution build policies, so it makes
sense to honor the BIND_NOW configuration for them.
This commit keeps using $(+link-tests), so that the benchmarks are
linked according to the --enable-hardcoded-path-in-tests configure
option.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Reduce the total time taken by benchtests. The malloc thread test takes 4
minutes to run which is significantly more than most other tests. Reduce
this to a more reasonable 40 seconds. The math tests take 10 seconds each,
eventhough all they do is loop on the same input. Anything more than 1
second runtime is way overkill, so set the limit to 1 second.
* benchtests/Makefile (BENCH_DURATION): Set to 1 second.
* benchtests/bench-malloc-thread.c (BENCH_DURATION): Set to 10 seconds.
Add missing generic hp_timing support. It uses clock_gettime (CLOCK_MONOTONIC)
which has unspecified starting time, nano-second accuracy, and should faster on
architectures that implementes the symbol as vDSO.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, and i686-linux-gnu. I also
checked the builds for all afected ABIs.
* benchtests/Makefile (USE_CLOCK_GETTIME) Remove.
* benchtests/README: Update description.
* benchtests/bench-timing.h: Default to hp-timing.
* sysdeps/generic/hp-timing.h (HP_TIMING_DIFF, HP_TIMING_ACCUM_NT,
HP_TIMING_PRINT): Remove.
(HP_TIMING_NOW): Add generic implementation.
(hp_timing_t): Change to uint64_t.
Add a malloc micro benchmark to enable accurate testing of the
various paths in malloc and free. The benchmark does a varying
number of allocations of a given block size, then frees them again.
It tests 3 different scenarios: single-threaded using main arena,
multi-threaded using thread-arena, main arena with SINGLE_THREAD_P
false.
* benchtests/Makefile: Add malloc-simple benchmark.
* benchtests/bench-malloc-simple.c: New benchmark.
This patch makes Python 3.4 or later a required tool for building
glibc, so allowing changes of awk, perl etc. code used in the build
and test to Python code without any such changes needing makefile
conditionals or to handle older Python versions.
This patch makes the configure test for Python check the version and
give an error if Python is missing or too old, and removes makefile
conditionals that are no longer needed. It does not itself convert
any code from another language to Python, and does not remove any
compatibility with older Python versions from existing scripts.
Tested for x86_64.
* configure.ac (PYTHON_PROG): Use AC_CHECK_PROG_VER. Set
critic_missing for versions before 3.4.
* configure: Regenerated.
* manual/install.texi (Tools for Compilation): Document
requirement for Python to build glibc.
* INSTALL: Regenerated.
* Rules [PYTHON]: Make code unconditional.
* benchtests/Makefile [PYTHON]: Likewise.
* conform/Makefile [PYTHON]: Likewise.
* manual/Makefile [PYTHON]: Likewise.
* math/Makefile [PYTHON]: Likewise.
RDTSCP waits until all previous instructions have executed and all
previous loads are globally visible before reading the counter. RDTSC
doesn't wait until all previous instructions have been executed before
reading the counter. All x86 processors since 2010 support RDTSCP
instruction. This patch adds RDTSCP support to benchtests.
* benchtests/Makefile (CPPFLAGS-nonlib): Add -DUSE_RDTSCP if
USE_RDTSCP is defined.
* sysdeps/x86/hp-timing.h (HP_TIMING_NOW): Use RDTSCP if
USE_RDTSCP is defined.
Currently the benchtests are run with internal GLIBC headers, which is incorrect.
Defining _ISOMAC in the makefile ensures the internal headers are bypassed.
Fix all tests which were relying on internal defines or includes.
* benchtests/Makefile: Define _ISOMAC.
* benchtests/bench-strcoll.c: Add missing sys/stat.h include.
* benchtests/bench-string.h: Define inhibit_loop_to_libcall macro.
* benchtests/bench-strstr.c: Define empty libc_hidden_builtin_def.
* benchtests/bench-strtok.c (oldstrtok): Use rawmemchr.
* benchtests/bench-timing.h: Define attribute_hidden.
This patch adds BENCHSET variable to benchtests/Makefile in order to
provide the capability to run a list of subsets of benchmark tests, ie;
make bench BENCHSET="bench-pthread bench-math malloc-thread"
This helps users to benchmark specific glibc area
ChangeLog:
* benchtests/Makefile:Add BENCHSET to allow subsets of
benchmarks to be run.
* benchtests/README: Add documentation for: Running subsets of
benchmarks.
Signed-off-by: Victor Rodriguez <victor.rodriguez.bahena@intel.com>
Signed-off-by: Icarus Sparry <icarus.w.sparry@intel.com>
Reviewed-By: Siddhesh Poyarekar <siddhesh@sourceware.org>
This benchmark is an attempt to eliminate cache effects from string
benchmarks. The benchmark walks both ways through a large memory area
and copies different sizes of memory and alignments one at a time
instead of looping around in the same memory area. This is a good
metric to have alongside the simple memmove benchmark (which is only
really useful for smaller sizes) especially for larger sizes where the
likelihood of the call being done only once is pretty high.
This benchmark is different from memcpy in that it also tests
overlapping copies.
* benchtests/bench-memmove-walk.c: New file.
* benchtests/Makefile (string-benchset): Add it.
This benchmark is an attempt to eliminate cache effects from string
benchmarks. The benchmark walks backward through a large memory area
and sets different sizes of memory and alignments one at a time
instead of looping around in the same memory area. This is a good
metric to have alongside the simple memset benchmark (which is only
really useful for smaller sizes) especially for larger sizes where the
likelihood of the call being done only once is pretty high.
* benchtests/bench-memset-walk.c: New file.
* benchtests/Makefile (string-benchset): Add it.
This benchmark is an attempt to eliminate cache effects from string
benchmarks. The benchmark walks both ways through a large memory area
and copies different sizes of memory and alignments one at a time
instead of looping around in the same memory area. This is a good
metric to have alongside the other memcpy benchmarks, especially for
larger sizes where the likelihood of the call being done only once is
pretty high.
* benchtests/bench-memcpy-walk.c: New file.
* benchtests/Makefile (string-benchset): Add it.
exp2f and log2f benchmark traces are just copies of the existing
expf and logf traces from wrf_r.
* benchtests/Makefile: Add exp2f and log2f benchmarks.
* benchtests/exp2f-inputs: Copy of expf-inputs.
* benchtests/log2f-inputs: Copy of logf-inputs.
Add a trace for logf. This is a reduced trace based on 2.8 billion
samples extracted from wrf_r.
* benchtests/Makefile: Add logf benchmark.
* benchtests/logf-inputs: Add reduced trace from wrf_r.
Add a trace for expf. This is a reduced trace based on 2.4 billion
samples extracted from wrf_r.
* benchtests/Makefile: Add expf benchmark.
* benchtests/expf-inputs: Add reduced trace from wrf_r.
This patch adds benchtests for the trunc and truncf functions. The
inputs listed are fairly arbitrary; I do not assert they are
representative of any particular application.
* benchtests/Makefile (bench-math): Add trunc and truncf.
(CFLAGS-bench-trunc.c): New variable.
(CFLAGS-bench-truncf.c): Likewise.
* benchtests/trunc-inputs: New file.
* benchtests/truncf-inputs: Likewise.
Add powf() bench test with input which covers these cases:
- positive base to positive exponent
- exponent 0
- negative base to even exponent
- exponent 1
- exponent -1
- squared
- squareroot
- 1 to negative exponent
- -1 to negative exponent
- base 0
- -1 to even exponent
- small base
- small exponent
* benchtests/Makefile (bench-math): Add powf.
* benchtests/powf-inputs: New file.