The strtod function should raise the "inexact" exception when its
result is inexact, but fails to do so except in the case of underflow
or overflow. This patch fixes it to do so for all inexact results.
tst-strtod-round is extended to test for this exception; the generator
is fixed to properly mark inexact results as such in the case where
the inexactness is from the mpfr_subnormalize step.
Tested for x86_64, x86 and powerpc.
[BZ #19380]
* stdlib/strtod_l.c (round_and_return): Force "inexact" exception
for inexact results.
* stdlib/gen-tst-strtod-round.c (string_to_fp): Return indication
of inexact result where mpfr_subnormalize is the only inexact
step.
* stdlib/tst-strtod-round-data.h: Regenerated.
* stdlib/tst-strtod-round-skeleton.c [!FE_INEXACT] (FE_INEXACT):
Define to 0.
(GEN_ONE_TEST): Test inexact exceptions raised are as expected.
Make mallopt helper functions for each mallopt parameter so that it
can be called consistently in other areas, like setting tunables.
* malloc/malloc.c (do_set_mallopt_check): New function.
(do_set_mmap_threshold): Likewise.
(do_set_mmaps_max): Likewise.
(do_set_top_pad): Likewise.
(do_set_perturb_byte): Likewise.
(do_set_trim_threshold): Likewise.
(do_set_arena_max): Likewise.
(do_set_arena_test): Likewise.
(__libc_mallopt): Use them.
TS 18661-1 defines canonicalize functions to produce a canonical
version of a floating-point representation. This patch implements
these functions for glibc.
As with the iscanonical macro, these functions are oriented to the
decimal floating-point case, where some values have both canonical and
noncanonical representations. However, the functions have a return
value that says whether they succeeded in storing a canonical result;
thus, they can fail for the case of an invalid representation (while
still not making any particular choice from among multiple equally
canonical valid representations of the same value). Since no
floating-point formats in glibc actually have noncanonical valid
representations, a type-generic implementation of these functions can
be used that expects iscanonical to return 0 only for invalid
representations. Now that iscanonical is used within libm.so,
libm_hidden_proto / libm_hidden_def are added for __iscanonicall.
The definition of these functions is intended to correspond to a
convertFormat operation to the same floating-point format. Thus, they
convert signaling NaNs to quiet NaNs, raising the "invalid" exception.
Such a conversion "should" produce "the canonical version of that
signaling NaN made quiet".
libm-test.inc is made to check NaN payloads for the output of these
functions, a new feature (at some point manipulation functions such as
fabs and copysign should have tests added that verify payload
preservation for them). As however some architectures may not follow
the recommended practice of preserving NaN payloads when converting a
signaling NaN to quiet, a new math-tests.h macro
SNAN_TESTS_PRESERVE_PAYLOAD is added, and defined to 0 for non-NAN2008
MIPS; any other architectures seeing test failures for lack of payload
preservation in this case should also define this macro to 0. (If any
cases arise where the sign isn't preserved either, those should have a
similar macro added.)
The ldbl-96 and ldbl-128ibm tests of iscanonical are renamed and
adapted to test canonicalizel as well on the same representations.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(canonicalize): New declaration.
* math/Versions (canonicalize): New libm symbol at version
GLIBC_2.25.
(canonicalizef): Likewise.
(canonicalizel): Likewise.
* math/Makefile (gen-libm-calls): Add s_canonicalizeF.
* math/s_canonicalize_template.c: New file.
* math/libm-test.inc: Update comment on functions tested and
testing of NaN payloads.
(TEST_NAN_PAYLOAD): New macro.
(NO_TEST_INLINE): Update value.
(XFAIL_TEST): Likewise.
(ERRNO_UNCHANGED): Likewise.
(ERRNO_EDOM): Likewise.
(ERRNO_ERANGE): Likewise.
(IGNORE_RESULT): Likewise.
(NON_FINITE): Likewise.
(TEST_SNAN): Likewise.
(NO_TEST_MATHVEC): Likewise.
(TEST_NAN_PAYLOAD_CANONICALIZE): New macro.
(check_float_internal): Check NaN payloads if TEST_NAN_PAYLOAD.
(struct test_Ffp_b1_data): New type.
(RUN_TEST_Ffp_b1): New macro.
(RUN_TEST_LOOP_Ffp_b1): Likewise.
(canonicalize_test_data): New array.
(canonicalize_test): New function.
(main): Call canonicalize_test.
* manual/arith.texi (FP Bit Twiddling): Document canonicalize,
canonicalizef and canonicalizel.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/ldbl-opt/nldbl-canonicalize.c: New file.
* sysdeps/ieee754/ldbl-opt/s_canonicalizel.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
canonicalize.
(CFLAGS-nldbl-canonicalize.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-iscanonical-ldbl-128ibm.c: Move
to ...
* sysdeps/ieee754/ldbl-128ibm/test-canonical-ldbl-128ibm.c:
... here.
(do_test): Also test canonicalizel.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Change
test-iscanonical-ldbl-128ibm to test-canonical-ldbl-128ibm.
* sysdeps/ieee754/ldbl-128ibm/include/bits/iscanonical.h: New
file.
* sysdeps/ieee754/ldbl-128ibm/s_iscanonicall.c (__iscanonicall):
Use libm_hidden_def.
* sysdeps/ieee754/ldbl-96/test-iscanonical-ldbl-96.c: Move to ...
* sysdeps/ieee754/ldbl-96/test-canonical-ldbl-96.c: ... here.
(do_test): Also test canonicalizel.
* sysdeps/ieee754/ldbl-96/Makefile (tests): Change
test-iscanonical-ldbl-96 to test-canonical-ldbl-96.
* sysdeps/ieee754/ldbl-96/include/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-96/s_iscanonicall.c (__iscanonicall): Use
libm_hidden_def.
* sysdeps/generic/math-tests.h (SNAN_TESTS_PRESERVE_PAYLOAD): New
macro.
* sysdeps/mips/math-tests.h [__mips_hard_float && !__mips_nan2008]
(SNAN_TESTS_PRESERVE_PAYLOAD): Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
This patch adds getpayloadl to libnldbl, missed in my patch that
originally implemented getpayload functions.
Tested for powerpc.
* sysdeps/ieee754/ldbl-opt/nldbl-getpayload.c: New file.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
getpayload.
(CFLAGS-nldbl-getpayload.c): New variable.
The function read_int, from printf-parse.h, parses an integer from a string
while avoiding overflows. It is used by other functions, such as vfprintf,
to avoid undefined behavior.
The function vfscanf (_IO_vfwscanf) parses an integer from the format
string, and can use read_int.
After the removal of __malloc_initialize_hook, newly compiled
Emacs binaries are no longer able to use these interfaces.
malloc_get_state is only used during the Emacs build process,
so we provide a stub implementation only. Existing Emacs binaries
will not call this stub function, but still reference the symbol.
The rewritten tst-mallocstate test constructs a dumped heap
which should approximates what existing Emacs binaries pass
to glibc malloc.
The IBM930, IBM933, IBM935 and IBM939 converters defined lookup
tables which were not constant. They also contained an
unnecessary pointer indirection.
The M_ARENA_MAX and M_ARENA_TEST macros are defined in malloc.c as
well as malloc.h, and the former is unnecessary. This patch removes
the duplicate. Tested on x86_64 to verify that the generated code
remains unchanged barring changed line numbers to __malloc_assert.
* malloc/malloc.c (M_ARENA_TEST, M_ARENA_MAX): Remove.
The manual incorrectly references sbrk as the method used to grow and
shrink heaps and the fact that M_TRIM_THRESHOLD and M_TOP_PAD control
that behavior. In reality, a heap may be grown or shrunk through
multiple methods depending on whether it is the main arena (in which
case sbrk is correct) or not (in which case, there are a number of
strategies including allocating an additional heap to grow an arena
and/or 'mprotect' a region to make it available for allocation).
Remove references to sbrk so that it covers the behavior more
accurately.
* manual/memory.texi (M_TOP_PAD): Remove reference to sbrk.
(M_TRIM_THRESHOLD): Likewise.
The M_ARENA_* mallopt parameters are in wide use in production to
control the number of arenas that a long lived process creates and
hence there is no point in stating that this interface is non-public.
Document this interface and remove the obsolete comment.
* manual/memory.texi (M_ARENA_TEST): Add documentation.
(M_ARENA_MAX): Likewise.
* malloc/malloc.c: Remove obsolete comment.
The mallopt parameters manual does not mention the environment
variables that can be used to set these parameters at program startup.
Mention those environment variables for completeness.
* manual/memory.texi: Add environment variable alternatives to
setting mallopt parameters.
No code uses atomic_fetch_xor_release except for the upcoming
conditional variable rewrite. Therefore there is no user
visible bug here. The use of atomic_compare_and_exchange_bool_rel
is removed (since it doesn't exist anymore), and is replaced
by atomic_compare_exchange_weak_release.
We use weak_release because it provides better performance in
the loop (the weak semantic) and because the xor is release MO
(the release semantic). We don't reload expected in the loop
because atomic_compare_and_exchange_weak_release does this for
us as part of the CAS failure.
It is otherwise a fairly plain conversion that fixes building
the new condvar for 32-bit x86. Passes all regression tests
for x86.
ISO/IEC TS 18661-1 adds several functions in the strfrom family to stdlib.
This patch adds strfromd, strfromf, and strfroml. This is being done in
preparation for the new floating-point type, float128. The added functions
convert a floating-point value into a string, with configurable format.
Building glibc for powerpc64 with recent (2.27.51.20161012) binutils,
with multi-arch enabled, I get the error:
../sysdeps/powerpc/powerpc64/power6/memset.S: Assembler messages:
../sysdeps/powerpc/powerpc64/power6/memset.S:254: Error: operand out of range (5 is not between 0 and 1)
../sysdeps/powerpc/powerpc64/power6/memset.S:254: Error: operand out of range (128 is not between 0 and 31)
../sysdeps/powerpc/powerpc64/power6/memset.S:254: Error: missing operand
Indeed, cmpli is documented as a four-operand instruction, and looking
at nearby code it seems likely cmpldi was intended. This patch fixes
this powerpc64 code accordingly, and makes a corresponding change to
the powerpc32 code.
Tested for powerpc, powerpc64 and powerpc64le by Tulio Magno Quites
Machado Filho
* sysdeps/powerpc/powerpc32/power6/memset.S (memset): Use cmplwi
instead of cmpli.
* sysdeps/powerpc/powerpc64/power6/memset.S (memset): Use cmpldi
instead of cmpli.
Although conceptually correct for p{read,write}{64} offset argument passing,
sh4 implementation does not generate the correct expected code. The
__ALIGNMENT_ARG redefinition is incorrect for two reasons: 1. the
kernel-features.h header is included multiple times (since it contains no
guards) and 2. the value it redefines is also incorrect (should be '0, '
instead of empty definition).
This patch fixes it by adding another macro, SYSCALL_LL_PRW{64}, meant to be
used to pass the offset argument on p{read,write}64. It is basically the
already define SYSCALL_LL{64} plus __ALIGNMENT_ARG unless __ASSUME_PRW_DUMMY_ARG
is define. In this case an empty dummy argument is used regardless how
__ALIGNMENT_ARG is defined (sh4 case).
Checked on x86_64, i686, aarch64, armhf, and powerpc64le (basically a sanity
check). Also, John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> and
James Clarke <jrtc27@jrtc27.com> help me check on a debian sh4 bootstrap using
2.24 plus this patch to verify it also corrected fixed the regression issue.
I also verified the generated object for a 2.24 build and master with this
patch for sh4 and both look identical.
* sysdeps/unix/sysv/linux/pread.c (__libc_pread): Use SYSCALL_LL_PRW.
* sysdeps/unix/sysv/linux/pwrite.c (__libc_pwrite): Likewise.
* sysdeps/unix/sysv/linux/pread64.c (__libc_pread64): Use
SYSCALL_LL64_PRW.
* sysdeps/unix/sysv/linux/pwrite64.c (__libc_pwrite64): Likewise.
* sysdeps/unix/sysv/linux/sh/kernel-features.h: Define
__ASSUME_PRW_DUMMY_ARG.
* sysdeps/unix/sysv/linux/sh/pread.c: Remove file.
* sysdeps/unix/sysv/linux/sh/pread64.c: Likewise.
* sysdeps/unix/sysv/linux/sh/pwrite.c: Likewise.
* sysdeps/unix/sysv/linux/sh/pwrite64.c: Likewise.
* sysdeps/unix/sysv/linux/sysdep.h: Define SYSCALL_LL_PRW and
SYSCALL_LL_PRW64 based on __ASSUME_PRW_DUMMY_ARG.
It is still common to include system header files in an extern "C"
block. This means that exiting <math.h>'s own extern "C" block
is not sufficient to get back to C++ mode. Use an extern "C++"
wrapper instead.
This patch makes the sqrt benchmark use -fno-builtin, as already done
for benchmarks of ffs and ffsll, so that it actually benchmarks the
glibc function as (presumably) intended even in the presence of the
compiler inlining sqrt.
Tested for x86_64 and also used for benchmarking my ARM sqrt patch.
* benchtests/Makefile (CFLAGS-bench-sqrt.c): New variable.
Some of the masks are wrong, and the naming is confusing.
There are two basic cases we really care about:
1. Stacking a new rounding mode when running certain
sections of code, and pausing exception handling.
2. Likewise, but discarding any exceptions which occur
while running under the new rounding mode.
libc_feholdexcept_setround_ppc_ctx has been removed as it basically
does the same thing as libc_feholdsetround_ppc_ctx but also clearing
any sticky bits. The restore behavior is what differentiates these
two cases as the SET_RESTORE_ROUND{,_NOEX} macros will either merge
or discard all exceptions occurring during scope of their usage.
Likewise, there are a number of routines to swap, replace,
or merge FP environments. This change reduces much of
the common and sometimes wrong code.
Tested on ppc64le, with results before and after.
This patch makes ARM sqrt and sqrtf use the VSQRT VFP square root
instruction when available, instead of much larger generic code for
computing square roots.
Now, GCC will normally inline sqrt calls except for negative arguments
where errno needs to be set, and because the benchtests fail to use
-fno-builtin that means no significant difference in benchmark results
for sqrt (note, however, there are lots of __ieee754_sqrt calls
internally in libm, which are *not* inlined - although some
architectures define __ieee754_sqrt in their math_private.h for that
purpose, ARM doesn't - so improving out-of-line sqrt performance is
still relevant to those other functions, if not for most ordinary
direct users of sqrt). With the benchtests changed to use
-fno-builtin for sqrt tests, typical performance results before the
change are ("max" is wildly varying in any case):
"duration": 9.88358e+09,
"iterations": 4.8783e+07,
"max": 457.764,
"min": 183.105,
"mean": 202.603
and after it are:
"duration": 9.45663e+09,
"iterations": 2.24385e+08,
"max": 274.659,
"min": 30.517,
"mean": 42.1447
Tested for ARM (hard-float and soft-float).
[BZ #20660]
* sysdeps/arm/e_sqrt.c: New file.
* sysdeps/arm/e_sqrtf.c: Likewise.
The powerpc (hard-float) implementations of copysignl, both 32-bit and
64-bit, raise spurious "invalid" exceptions when the first argument is
a signaling NaN. copysign functions should never raise exceptions
even for signaling NaNs.
The problem is the use of an fcmpu instruction to test the sign of the
high part of the long double argument. This patch fixes the functions
to use fsel instead (as used for fabsl following my fixes for a
similar bug there), or to examine the integer representation for older
32-bit processors without fsel.
Tested for powerpc64 and powerpc32 (configurations with and without
fsel used).
[BZ #20718]
* sysdeps/powerpc/powerpc32/fpu/s_copysignl.S (__copysignl): Do
not use floating-point comparisons to test sign.
* sysdeps/powerpc/powerpc64/fpu/s_copysignl.S (__copysignl):
Likewise.
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the getpayload functions for glibc; these
extract the NaN payload (from an argument passed as a pointer, for
which corresponding libm-test support is added) and return it in the
same floating-point type. The return value of these functions is
unspecified for non-NaN arguments; the patch does the simplest thing
to implement, which is that the functions do not check whether the
argument is a NaN and just treat the relevant bits of the
representation as a payload regardless. A conversion from integer to
floating-point is used to produce the required return value, except in
the ldbl-128 case; as 128-bit integers are not supported for all
configurations using ldbl-128, the code constructs the required
floating-point representation of the return value directly instead.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(getpayload): New declaration.
* math/Versions (getpayload): New libm symbol at version
GLIBC_2.25.
(getpayloadf): Likewise.
(getpayloadl): Likewise.
* math/Makefile (libm-calls): Add s_getpayloadF.
* math/libm-test.inc: Include <nan-high-order-bit.h>.
(struct test_f_f_data): Add comment.
(RUN_TEST_fp_f): New macro.
(RUN_TEST_LOOP_fp_f): Likewise.
(getpayload_test_data): New array.
(getpayload_test): New function.
(main): Call getpayload_test.
* math/gen-libm-test.pl (parse_args): Handle 'p' in argument
descriptor.
* manual/arith.texi (FP Bit Twiddling): Document getpayload,
getpayloadf and getpayloadl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_getpayload.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_getpayload.c: Likewise.
* sysdeps/ieee754/flt-32/s_getpayloadf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_getpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_getpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_getpayloadl.c: Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
The fallocate syscall might fail on Linux due missing support from
underlying filesystem (for instance some NFS versions). This patch
adds this check for fallocate tests. It also moves tst-fallocate{64}
to 'io' folder (since it is on fallocate{64} is built).
Checked on x86_64.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = math] (tests): Move
tst-fallocate{64}.
* sysdeps/unix/sysv/linux/tst-fallocate-common.c: Check for EOPNOTSUPP
on syscall return.
In the Intel Architecture Instruction Set Extensions Programming
reference the recommended way to test for FMA in section
'2.2.1 Detection of FMA' is:
"Application Software must identify that hardware supports AVX as
explained in ... after that it must also detect support for FMA..."
We don't do that in glibc. We use osxsave to detect the use of xgetbv,
and after that we check for AVX and FMA orthogonally. It is conceivable
that you could have the AVX bit clear and the FMA bit in an undefined
state.
This commit fixes FMA and AVX2 detection to depend on usable AVX
as required by the recommended Intel sequences.
v1: https://www.sourceware.org/ml/libc-alpha/2016-10/msg00241.html
v2: https://www.sourceware.org/ml/libc-alpha/2016-10/msg00265.html
This patch moves the HIGH_ORDER_BIT_IS_SET_FOR_SNAN macro from being
defined or undefined to the preferred convention of always being
defined, to either 0 or 1, so allowing typo-proof tests with #if.
The macro is moved from math_private.h to a new header
nan-high-order-bit.h to make it easy for all architectures to define,
either through the sysdeps/generic version of the header or through
providing their own version of the header, without needing #ifndef in
the generic math_private.h to give a default definition. The move
also allows the macro to be used without needing math_private.h to be
included; the immediate motivation of this patch is to allow tests to
access this information (to know what kinds of NaNs 0 is a valid
payload for) without needing to include math_private.h. Existing
C level rather than preprocessor conditionals at all, but this patch
does not make such a change).
Tested for x86_64 and x86 (testsuite); also verified for x86_64, x86,
mips64 and powerpc that installed stripped shared libraries are
unchanged by the patch.
* sysdeps/generic/nan-high-order-bit.h: New file.
* sysdeps/hppa/nan-high-order-bit.h: Likewise.
* sysdeps/mips/nan-high-order-bit.h: Likewise.
* sysdeps/hppa/math_private.h: Remove file.
* sysdeps/mips/math_private.h (HIGH_ORDER_BIT_IS_SET_FOR_SNAN): Do
not define here.
* sysdeps/ieee754/dbl-64/s_issignaling.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/s_totalorder.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_issignaling.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_issignalingf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
As gcc is using unordered comparison instructions which do not
raise invalid exception if any operand is quiet NAN,
FIX_COMPARE_INVALID is defined to 1.
Thus iseqsig is calling feraiseexcept as workaround.
Some of the complex arithmetic functions have the following pattern:
in some piece of code, one part of the input (real or imaginary,
depending on the function) is either infinite or NaN. Part of the
result is to be set to NaN in either case, and FE_INVALID raised only
if the relevant part of the input was infinite.
In such a case, there is no actual need for the conditional on the
type of the input, since subtracting the relevant part of the input
from itself will produce a NaN, with FE_INVALID only if the relevant
part of the input was infinite. This simplifies the code, and as a
quality-of-implementation matter also improves things by propagating
NaN payloads. (Right now these functions always raise FE_INVALID for
signaling NaN arguments because of the call to fpclassify - at least
unless glibc is built with -Os - but if fpclassify moves to using
integer arithmetic in future, doing arithmetic on the NaN argument
also ensures an exception for sNaNs.)
Tested for x86_64 and x86.
* math/s_ccosh_template.c (M_DECL_FUNC (__ccosh)): Instead of
raising FE_INVALID with feraisexcept in case where part of
argument is infinite, subtract that part of argument from itself.
* math/s_cexp_template.c (M_DECL_FUNC (__cexp)): Likewise.
* math/s_csin_template.c (M_DECL_FUNC (__csin)): Likewise.
* math/s_csinh_template.c (M_DECL_FUNC (__csinh)): Likewise.
This patch adds more tests of totalorder for finite inputs.
Tested for x86_64, x86, mips64 and powerpc.
* math/libm-test.inc (totalorder_test_data): Add more tests.
Recent binutils versions (at least 2.27) complains about libc.so
when linking sotruss-lib.so with:
libc.so:(*IND*+0x0): multiple definition of `posix_fadvise64@GLIBC_2.2'
libc.so::(.text+0xcf940): first defined here
libc.so:(*IND*+0x0): multiple definition of `posix_fadvise64'
collect2: error: ld returned 1 exit status
Dynamic symbols for libc.so shows (readelf --dyn-syms):
262: 000000000010b950 28 FUNC GLOBAL DEFAULT 12 posix_fadvise64@GLIBC_2.2
417: 000000000010b950 28 FUNC WEAK DEFAULT 12 posix_fadvise64@@GLIBC_2.2
1505: 000000000010b950 28 FUNC GLOBAL DEFAULT 12 posix_fadvise64@@GLIBC_2.3.3
That is, two separate definitions at version GLIBC_2.2. The issue is
sysdeps/unix/sysv/linux/posix_fadvise64.c creates posix_fadvise64 weak_alias,
while sysdeps/unix/sysv/linux/mips/mips64/n64/posix_fadvise64.c then adds
compat_symbol / versioned_symbol calls.
The patch remove the weak_alias definition on mips64 specific version so
direct weak_alias is disabled.
Checked on mips64n64 build with binutils 2.27.51.20161012.
* sysdeps/unix/sysv/linux/mips/mips64/n64/posix_fadvise64.c:
Undefine weak_alias.
Since the maximum CPUID level of older Intel CPUs is 1, change
handle_intel to return -1, instead of assert, when the maximum
CPUID level is less than 2.
[BZ #20647]
* sysdeps/x86/cacheinfo.c (handle_intel): Return -1 if the
maximum CPUID level is less than 2.
TS 18661-1 defines totalorder functions implementing the totalOrder
comparison operation from IEEE 754-2008. This patch implements these
functions for glibc, including the type-generic macro in <tgmath.h>.
(The totalordermag functions will be added in a separate patch.)
The description of the totalOrder operation is complicated. However,
for IEEE interchange binary formats and the preferred quiet NaN
convention, what that complicated description means is that you
interpret the representation as a sign-magnitude integer (with -0
coming before +0) and do a <= comparison on that interpretation. For
finite values and infinities the ordering of the sign-magnitude
integers is just the same as the ordering of floating-point values, so
this extends that to all representations. (Different representations
of the same floating-point value - which includes same quantum in the
decimal case - must still be considered equal by this operation, but
that issue doesn't arise for IEEE interchange binary formats.) So the
complications are:
* When MIPS quiet NaN conventions are in use, the representation of
NaNs needs adjusting before making such an integer comparison. This
patch does this adjustment only when both arguments are NaNs, as
there's no need for it if only one is a NaN, and as long as both are
NaNs you can just flip the relevant bits without any problems from
this turning a NaN into an infinity.
* For the m68k version of ldbl-96, where the high mantissa bit is
"don't care" for infinities and NaNs, representations where it
differs must compare the same. Note: although the testcase for this
compiles, I have not actually tested on m68k.
* For ldbl-128ibm, the low part must be ignored when the high part is
NaN, and low parts of +0 and -0 must be considered the same whatever
the high part.
The new tests in libm-test.inc are the first tests there specifying
particular payloads for input NaNs. Separate tests are also added for
the ldbl-96 and ldbl-128ibm special cases where there are different
representations of the same value that must compare equal (which can't
be covered in libm-test.inc as that only specifies values, not
representations).
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(totalorder): New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder):
New macro.
* math/Versions (totalorder): New libm symbol at version
GLIBC_2.25.
(totalorderf): Likewise.
(totalorderl): Likewise.
* math/Makefile (libm-calls): Add s_totalorderF.
* math/gen-libm-test.pl (parse_args): Escape quotes in test name
string.
* math/libm-test.inc (PAYLOAD_DIG): New macro.
(qnan_value_pl): Likewise.
(snan_value_pl): Likewise.
(qnan_value): Define using qnan_value_pl.
(snan_value): Define using snan_value_pl.
(struct test_ff_i_data): Add comment about which tests use this
structure.
(RUN_TEST_ff_b): New macro.
(RUN_TEST_LOOP_ff_b): Likewise.
(totalorder_test_data): New array.
(totalorder_test): New function.
(main): Call totalorder_test.
* math/test-tgmath.c (NCALLS): Increase to 122.
(F(compile_test)): Call totalorder.
(F(totalorder)): New function.
* manual/arith.texi (FP Comparison Functions): Document
totalorder, totalorderf and totalorderl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_totalorder.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
totalorder.
(CFLAGS-nldbl-totalorder.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c: New
file.
* sysdeps/ieee754/ldbl-128ibm/Makefile [$(subdir) = math] (tests):
Add test-totalorderl-ldbl-128ibm.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c: New file.
* sysdeps/ieee754/ldbl-96/Makefile [$(subdir) = math] (tests): Add
test-totalorderl-ldbl-96.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
This patch consolidates all the sync_file_range implementation for Linux
in only one (sysdeps/unix/sysv/linux/sync_file_range.c). It also removes
the syscall from the auto-generation using assembly macros (except for
x86_64 due x32 [1]).
For current minimum supported kernel (2.6.32 for x86_64 and 3.2 for all
other architectures) either sync_file_range or sync_file_range2 is supported
and it is expected that any future Linux ABI will provide either of one
syscall. So the code path that returns ENOSYS in the case of missing
syscall is removed.
Checked on x86_64, i386, powerpc64le, aarch64, and armhf.
* sysdeps/unix/sysv/linux/Makefile (tests): Add tst-sync_file_range.
* sysdeps/unix/sysv/linux/mips/mips32/sync_file_range.c: Remove file.
* sysdeps/sysv/linux/powerpc/powerpc64/sync_file_range.c: Likewise.
* sysdeps/unix/sysv/linux/sync_file_range.c: New file.
* sysdeps/unix/sysv/linux/tst-sync_file_range.c (sync_file_range):
Consolidate all Linux implementations.
[1] https://patchwork.ozlabs.org/patch/659794/
Some libm complex functions have code that computes M_NAN + M_NAN.
This is nonsensical; it's just equivalent to M_NAN, since it's a quiet
NaN (and the comments suggesting this raises an exception are
similarly wrong). This patch changes the code just to use M_NAN (and
removes the bogus comments). (Preferably, code should either
propagate an input NaN or do a computation that raises "invalid" and
generates a default NaN at the same time. There are various cases,
however, that currently raise "invalid" even for NaN inputs; I think
those are cases where "invalid" is optional in ISO C so a change to
whether it's raised would be OK, but they would still need more
careful consideration than the cases where such issues do not arise.)
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch).
* math/s_ccosh_template.c (M_DECL_FUNC (__ccosh)): Use M_NAN
instead of M_NAN + M_NAN.
* math/s_csinh_template.c (M_DECL_FUNC (__csinh)): Likewise.
iseqsig, like other type-generic comparison macros, should behave like
a comparison operator in not removing excess range and precision from
its arguments (see C11 F.10.11). This patch implements this by making
definitions of iseqsig appropriately conditional on
__FLT_EVAL_METHOD__ (including support for TS 18661-3 values of that
macro), with a corresponding testcase (that failed for 32-bit x86 in
the absence of the math.h changes) being added. (Of course the
definitions may need reworking when float128 support is added, just as
with other type-generic macros.)
Tested for x86_64 and x86.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (iseqsig): Define
conditional on value of [__FLT_EVAL_METHOD__].
* math/test-iseqsig-excess-precision.c: New file.
* math/Makefile (tests): Add test-iseqsig-excess-precision.