CET arch_prctl bits should be defined in <asm/prctl.h> from Linux kernel
header files. Add x86 <include/asm/prctl.h> for pre-CET kernel header
files.
Note: sysdeps/unix/sysv/linux/x86/include/asm/prctl.h should be removed
if <asm/prctl.h> from the required kernel header files contains CET
arch_prctl bits.
/* CET features:
IBT: GNU_PROPERTY_X86_FEATURE_1_IBT
SHSTK: GNU_PROPERTY_X86_FEATURE_1_SHSTK
*/
/* Return CET features in unsigned long long *addr:
features: addr[0].
shadow stack base address: addr[1].
shadow stack size: addr[2].
*/
# define ARCH_CET_STATUS 0x3001
/* Disable CET features in unsigned int features. */
# define ARCH_CET_DISABLE 0x3002
/* Lock all CET features. */
# define ARCH_CET_LOCK 0x3003
/* Allocate a new shadow stack with unsigned long long *addr:
IN: requested shadow stack size: *addr.
OUT: allocated shadow stack address: *addr.
*/
# define ARCH_CET_ALLOC_SHSTK 0x3004
/* Return legacy region bitmap info in unsigned long long *addr:
address: addr[0].
size: addr[1].
*/
# define ARCH_CET_LEGACY_BITMAP 0x3005
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/x86/include/asm/prctl.h: New file.
* sysdeps/unix/sysv/linux/x86/cpu-features.c: Include
<sys/prctl.h> and <asm/prctl.h>.
(get_cet_status): Call arch_prctl with ARCH_CET_STATUS.
* sysdeps/unix/sysv/linux/x86/dl-cet.h: Include <sys/prctl.h>
and <asm/prctl.h>.
(dl_cet_allocate_legacy_bitmap): Call arch_prctl with
ARCH_CET_LEGACY_BITMAP.
(dl_cet_disable_cet): Call arch_prctl with ARCH_CET_DISABLE.
(dl_cet_lock_cet): Call arch_prctl with ARCH_CET_LOCK.
* sysdeps/x86/libc-start.c: Include <startup.h>.
This patch adds the thrd_* definitions from C11 threads (ISO/IEC 9899:2011),
more specifically thrd_create, thrd_curent, rhd_detach, thrd_equal,
thrd_exit, thrd_join, thrd_sleep, thrd_yield, and required types.
Mostly of the definitions are composed based on POSIX conterparts, such as
thrd_t (using pthread_t). For thrd_* function internally direct
POSIX pthread call are used with the exceptions:
1. thrd_start uses pthread_create internal implementation, but changes
how to actually calls the start routine. This is due the difference
in signature between POSIX and C11, where former return a 'void *'
and latter 'int'.
To avoid calling convention issues due 'void *' to int cast, routines
from C11 threads are started slight different than default pthread one.
Explicit cast to expected return are used internally on pthread_create
and the result is stored back to void also with an explicit cast.
2. thrd_sleep uses nanosleep internal direct syscall to avoid clobbering
errno and to handle expected standard return codes. It is a
cancellation entrypoint to be consistent with both thrd_join and
cnd_{timed}wait.
3. thrd_yield also uses internal direct syscall to avoid errno clobbering.
Checked with a build for all major ABI (aarch64-linux-gnu, alpha-linux-gnu,
arm-linux-gnueabi, i386-linux-gnu, ia64-linux-gnu, m68k-linux-gnu,
microblaze-linux-gnu [1], mips{64}-linux-gnu, nios2-linux-gnu,
powerpc{64le}-linux-gnu, s390{x}-linux-gnu, sparc{64}-linux-gnu,
and x86_64-linux-gnu).
Also ran a full check on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
arm-linux-gnueabhf, and powerpc64le-linux-gnu.
[BZ #14092]
* conform/Makefile (conformtest-headers-ISO11): Add threads.h.
(linknamespace-libs-ISO11): Add libpthread.a.
* conform/data/threads.h-data: New file: add C11 thrd_* types and
functions.
* include/stdc-predef.h (__STDC_NO_THREADS__): Remove definition.
* nptl/Makefile (headers): Add threads.h.
(libpthread-routines): Add new C11 thread thrd_create, thrd_current,
thrd_detach, thrd_equal, thrd_exit, thrd_join, thrd_sleep, and
thrd_yield.
* nptl/Versions (libpthread) [GLIBC_2.28]): Add new C11 thread
thrd_create, thrd_current, thrd_detach, thrd_equal, thrd_exit,
thrd_join, thrd_sleep, and thrd_yield symbols.
* nptl/descr.h (struct pthread): Add c11 field.
* nptl/pthreadP.h (ATTR_C11_THREAD): New define.
* nptl/pthread_create.c (START_THREAD_DEFN): Call C11 thread start
routine with expected function prototype.
(__pthread_create_2_1): Add C11 threads check based on attribute
value.
* sysdeps/unix/sysdep.h (INTERNAL_SYSCALL_CANCEL): New macro.
* nptl/thrd_create.c: New file.
* nptl/thrd_current.c: Likewise.
* nptl/thrd_detach.c: Likewise.
* nptl/thrd_equal.c: Likewise.
* nptl/thrd_exit.c: Likewise.
* nptl/thrd_join.c: Likewise.
* nptl/thrd_priv.h: Likewise.
* nptl/thrd_sleep.c: Likewise.
* nptl/thrd_yield.c: Likewise.
* include/threads.h: Likewise.
Add <bits/indirect-return.h> and include it in <ucontext.h>.
__INDIRECT_RETURN defined in <bits/indirect-return.h> indicates if
swapcontext requires special compiler treatment. The default
__INDIRECT_RETURN is empty.
On x86, when shadow stack is enabled, __INDIRECT_RETURN is defined
with indirect_return attribute, which has been added to GCC 9, to
indicate that swapcontext returns via indirect branch. Otherwise
__INDIRECT_RETURN is defined with returns_twice attribute.
When shadow stack is enabled, remove always_inline attribute from
prepare_test_buffer in string/tst-xbzero-opt.c to avoid:
tst-xbzero-opt.c: In function ‘prepare_test_buffer’:
tst-xbzero-opt.c:105:1: error: function ‘prepare_test_buffer’ can never be inlined because it uses setjmp
prepare_test_buffer (unsigned char *buf)
when indirect_return attribute isn't available.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* bits/indirect-return.h: New file.
* misc/sys/cdefs.h (__glibc_has_attribute): New.
* sysdeps/x86/bits/indirect-return.h: Likewise.
* stdlib/Makefile (headers): Add bits/indirect-return.h.
* stdlib/ucontext.h: Include <bits/indirect-return.h>.
(swapcontext): Add __INDIRECT_RETURN.
* string/tst-xbzero-opt.c (ALWAYS_INLINE): New.
(prepare_test_buffer): Use it.
The shadow stack prevents us from pushing the saved return PC onto
the stack and returning normally. Instead we pop the shadow stack
and return directly. This is the safest way to return and ensures
any stack manipulations done by the vfork'd child doesn't cause the
parent to terminate when CET is enabled.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/i386/vfork.S (SYSCALL_ERROR_HANDLER):
Redefine if shadow stack is enabled.
(SYSCALL_ERROR_LABEL): Likewise.
(__vfork): Pop shadow stack and jump back to to caller directly
when shadow stack is in use.
* sysdeps/unix/sysv/linux/x86_64/vfork.S (SYSCALL_ERROR_HANDLER):
Redefine if shadow stack is enabled.
(SYSCALL_ERROR_LABEL): Likewise.
(__vfork): Pop shadow stack and jump back to to caller directly
when shadow stack is in use.
Add endbr64 to tst-quadmod1.S and tst-quadmod2.S so that func and foo
can be called indirectly.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/x86_64/tst-quadmod1.S (func): Add endbr64 if IBT is
enabled.
(foo): Likewise.
* sysdeps/x86_64/tst-quadmod2.S (func) : Likewise.
(foo): Likewise.
* scripts/check-execstack.awk: Consider `xfail' variable containing a
list
of libraries whose stack executability is expected.
* elf/Makefile ($(objpfx)check-execstack.out): Pass
$(check-execstack-xfail) to check-execstack.awk through `xfail'
variable.
* sysdeps/mach/hurd/i386/Makefile (check-execstack-xfail): Set to ld.so
libc.so libpthread.so.
* sysdeps/mach/hurd/pipe2.c: New file, copy from pipe.c. Evolve it to
implement __pipe2.
* sysdeps/mach/hurd/pipe.c (__pipe): Reimplement using __pipe2.
i386 add_n.S and sub_n.S use a trick to implment jump tables with LEA.
We can't use conditional branches nor normal jump tables since jump
table entries use EFLAGS set by jump table index. This patch adds
_CET_ENDBR to indirect jump targets and adjust destination for
_CET_ENDBR.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/i386/add_n.S: Include <sysdep.h>, instead of
"sysdep.h".
(__mpn_add_n): Save and restore %ebx if IBT is enabed. Add
_CET_ENDBR to indirect jump targets and adjust jump destination
for _CET_ENDBR.
* sysdeps/i386/i686/add_n.S: Include <sysdep.h>, instead of
"sysdep.h".
(__mpn_add_n): Save and restore %ebx if IBT is enabed. Add
_CET_ENDBR to indirect jump targets and adjust jump destination
for _CET_ENDBR.
* sysdeps/i386/sub_n.S: Include <sysdep.h>, instead of
"sysdep.h".
(__mpn_sub_n): Save and restore %ebx if IBT is enabed. Add
_CET_ENDBR to indirect jump targets and adjust jump destination
for _CET_ENDBR.
Add _CET_ENDBR to STRCMP_SSE42, which is called indirectly, to support
IBT.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/x86_64/multiarch/strcmp-sse42.S (STRCMP_SSE42): Add
_CET_ENDBR.
Add _CET_ENDBR to functions in crti.S, which are called indirectly, to
support IBT.
Tested on i686 and x86-64.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/i386/crti.S (_init): Add _CET_ENDBR.
(_fini): Likewise.
* sysdeps/x86_64/crti.S (_init): Likewise.
(_fini): Likewise.
Always include <dl-cet.h> and cet-tunables.h> when CET is enabled.
Otherwise, configure glibc with --enable-cet --disable-tunables will
fail to build.
* sysdeps/x86/cpu-features.c: Always include <dl-cet.h> and
cet-tunables.h> when CET is enabled.
Intel Control-flow Enforcement Technology (CET) instructions:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-en
forcement-technology-preview.pdf
includes Indirect Branch Tracking (IBT) and Shadow Stack (SHSTK).
GNU_PROPERTY_X86_FEATURE_1_IBT is added to GNU program property to
indicate that all executable sections are compatible with IBT when
ENDBR instruction starts each valid target where an indirect branch
instruction can land. Linker sets GNU_PROPERTY_X86_FEATURE_1_IBT on
output only if it is set on all relocatable inputs.
On an IBT capable processor, the following steps should be taken:
1. When loading an executable without an interpreter, enable IBT and
lock IBT if GNU_PROPERTY_X86_FEATURE_1_IBT is set on the executable.
2. When loading an executable with an interpreter, enable IBT if
GNU_PROPERTY_X86_FEATURE_1_IBT is set on the interpreter.
a. If GNU_PROPERTY_X86_FEATURE_1_IBT isn't set on the executable,
disable IBT.
b. Lock IBT.
3. If IBT is enabled, when loading a shared object without
GNU_PROPERTY_X86_FEATURE_1_IBT:
a. If legacy interwork is allowed, then mark all pages in executable
PT_LOAD segments in legacy code page bitmap. Failure of legacy code
page bitmap allocation causes an error.
b. If legacy interwork isn't allowed, it causes an error.
GNU_PROPERTY_X86_FEATURE_1_SHSTK is added to GNU program property to
indicate that all executable sections are compatible with SHSTK where
return address popped from shadow stack always matches return address
popped from normal stack. Linker sets GNU_PROPERTY_X86_FEATURE_1_SHSTK
on output only if it is set on all relocatable inputs.
On a SHSTK capable processor, the following steps should be taken:
1. When loading an executable without an interpreter, enable SHSTK if
GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on the executable.
2. When loading an executable with an interpreter, enable SHSTK if
GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on interpreter.
a. If GNU_PROPERTY_X86_FEATURE_1_SHSTK isn't set on the executable
or any shared objects loaded via the DT_NEEDED tag, disable SHSTK.
b. Otherwise lock SHSTK.
3. After SHSTK is enabled, it is an error to load a shared object
without GNU_PROPERTY_X86_FEATURE_1_SHSTK.
To enable CET support in glibc, --enable-cet is required to configure
glibc. When CET is enabled, both compiler and assembler must support
CET. Otherwise, it is a configure-time error.
To support CET run-time control,
1. _dl_x86_feature_1 is added to the writable ld.so namespace to indicate
if IBT or SHSTK are enabled at run-time. It should be initialized by
init_cpu_features.
2. For dynamic executables:
a. A l_cet field is added to struct link_map to indicate if IBT or
SHSTK is enabled in an ELF module. _dl_process_pt_note or
_rtld_process_pt_note is called to process PT_NOTE segment for
GNU program property and set l_cet.
b. _dl_open_check is added to check IBT and SHSTK compatibilty when
dlopening a shared object.
3. Replace i386 _dl_runtime_resolve and _dl_runtime_profile with
_dl_runtime_resolve_shstk and _dl_runtime_profile_shstk, respectively if
SHSTK is enabled.
CET run-time control can be changed via GLIBC_TUNABLES with
$ export GLIBC_TUNABLES=glibc.tune.x86_shstk=[permissive|on|off]
$ export GLIBC_TUNABLES=glibc.tune.x86_ibt=[permissive|on|off]
1. permissive: SHSTK is disabled when dlopening a legacy ELF module.
2. on: IBT or SHSTK are always enabled, regardless if there are IBT or
SHSTK bits in GNU program property.
3. off: IBT or SHSTK are always disabled, regardless if there are IBT or
SHSTK bits in GNU program property.
<cet.h> from CET-enabled GCC is automatically included by assembly codes
to add GNU_PROPERTY_X86_FEATURE_1_IBT and GNU_PROPERTY_X86_FEATURE_1_SHSTK
to GNU program property. _CET_ENDBR is added at the entrance of all
assembly functions whose address may be taken. _CET_NOTRACK is used to
insert NOTRACK prefix with indirect jump table to support IBT. It is
defined as notrack when _CET_NOTRACK is defined in <cet.h>.
[BZ #21598]
* configure.ac: Add --enable-cet.
* configure: Regenerated.
* elf/Makefille (all-built-dso): Add a comment.
* elf/dl-load.c (filebuf): Moved before "dynamic-link.h".
Include <dl-prop.h>.
(_dl_map_object_from_fd): Call _dl_process_pt_note on PT_NOTE
segment.
* elf/dl-open.c: Include <dl-prop.h>.
(dl_open_worker): Call _dl_open_check.
* elf/rtld.c: Include <dl-prop.h>.
(dl_main): Call _rtld_process_pt_note on PT_NOTE segment. Call
_rtld_main_check.
* sysdeps/generic/dl-prop.h: New file.
* sysdeps/i386/dl-cet.c: Likewise.
* sysdeps/unix/sysv/linux/x86/cpu-features.c: Likewise.
* sysdeps/unix/sysv/linux/x86/dl-cet.h: Likewise.
* sysdeps/x86/cet-tunables.h: Likewise.
* sysdeps/x86/check-cet.awk: Likewise.
* sysdeps/x86/configure: Likewise.
* sysdeps/x86/configure.ac: Likewise.
* sysdeps/x86/dl-cet.c: Likewise.
* sysdeps/x86/dl-procruntime.c: Likewise.
* sysdeps/x86/dl-prop.h: Likewise.
* sysdeps/x86/libc-start.h: Likewise.
* sysdeps/x86/link_map.h: Likewise.
* sysdeps/i386/dl-trampoline.S (_dl_runtime_resolve): Add
_CET_ENDBR.
(_dl_runtime_profile): Likewise.
(_dl_runtime_resolve_shstk): New.
(_dl_runtime_profile_shstk): Likewise.
* sysdeps/linux/x86/Makefile (sysdep-dl-routines): Add dl-cet
if CET is enabled.
(CFLAGS-.o): Add -fcf-protection if CET is enabled.
(CFLAGS-.os): Likewise.
(CFLAGS-.op): Likewise.
(CFLAGS-.oS): Likewise.
(asm-CPPFLAGS): Add -fcf-protection -include cet.h if CET
is enabled.
(tests-special): Add $(objpfx)check-cet.out.
(cet-built-dso): New.
(+$(cet-built-dso:=.note)): Likewise.
(common-generated): Add $(cet-built-dso:$(common-objpfx)%=%.note).
($(objpfx)check-cet.out): New.
(generated): Add check-cet.out.
* sysdeps/x86/cpu-features.c: Include <dl-cet.h> and
<cet-tunables.h>.
(TUNABLE_CALLBACK (set_x86_ibt)): New prototype.
(TUNABLE_CALLBACK (set_x86_shstk)): Likewise.
(init_cpu_features): Call get_cet_status to check CET status
and update dl_x86_feature_1 with CET status. Call
TUNABLE_CALLBACK (set_x86_ibt) and TUNABLE_CALLBACK
(set_x86_shstk). Disable and lock CET in libc.a.
* sysdeps/x86/cpu-tunables.c: Include <cet-tunables.h>.
(TUNABLE_CALLBACK (set_x86_ibt)): New function.
(TUNABLE_CALLBACK (set_x86_shstk)): Likewise.
* sysdeps/x86/sysdep.h (_CET_NOTRACK): New.
(_CET_ENDBR): Define if not defined.
(ENTRY): Add _CET_ENDBR.
* sysdeps/x86/dl-tunables.list (glibc.tune): Add x86_ibt and
x86_shstk.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Add
_CET_ENDBR.
(_dl_runtime_profile): Likewise.
This patch changes longjmp to always restore the TOC pointer (r2 register)
to the caller frame on powerpc64 and powerpc64le. This is related to bug
21895 that reports a situation where you have a static longjmp to a
shared object file.
[BZ #21895]
* sysdeps/powerpc/powerpc64/__longjmp-common.S: Remove condition code for
restoring r2 in longjmp.
* sysdeps/powerpc/powerpc64/Makefile: Added tst-setjmp-bug21895-static to
test list.
Added rules to build test tst-setjmp-bug21895-static.
Added module setjmp-bug21895 and rules to build a shared object from it.
* sysdeps/powerpc/powerpc64/setjmp-bug21895.c: New test file.
* sysdeps/powerpc/powerpc64/tst-setjmp-bug21895-static.c: New test file.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Since SHADOW_STACK_POINTER_OFFSET is defined in jmp_buf-ssp.h, we must
undef SHADOW_STACK_POINTER_OFFSET after including <jmp_buf-ssp.h>.
* sysdeps/unix/sysv/linux/x86_64/____longjmp_chk.S: Undef
SHADOW_STACK_POINTER_OFFSET after including <jmp_buf-ssp.h>.
Save and restore shadow stack pointer in setjmp and longjmp to support
shadow stack in Intel CET. Use feature_1 in tcbhead_t to check if
shadow stack is enabled before saving and restoring shadow stack pointer.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/i386/__longjmp.S: Include <jmp_buf-ssp.h>.
(__longjmp): Restore shadow stack pointer if shadow stack is
enabled, SHADOW_STACK_POINTER_OFFSET is defined and __longjmp
isn't defined for __longjmp_cancel.
* sysdeps/i386/bsd-_setjmp.S: Include <jmp_buf-ssp.h>.
(_setjmp): Save shadow stack pointer if shadow stack is enabled
and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/i386/bsd-setjmp.S: Include <jmp_buf-ssp.h>.
(setjmp): Save shadow stack pointer if shadow stack is enabled
and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/i386/setjmp.S: Include <jmp_buf-ssp.h>.
(__sigsetjmp): Save shadow stack pointer if shadow stack is
enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/unix/sysv/linux/i386/____longjmp_chk.S: Include
<jmp_buf-ssp.h>.
(____longjmp_chk): Restore shadow stack pointer if shadow stack
is enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/unix/sysv/linux/x86/Makefile (gen-as-const-headers):
Remove jmp_buf-ssp.sym.
* sysdeps/unix/sysv/linux/x86_64/____longjmp_chk.S: Include
<jmp_buf-ssp.h>.
(____longjmp_chk): Restore shadow stack pointer if shadow stack
is enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/x86/Makefile (gen-as-const-headers): Add
jmp_buf-ssp.sym.
* sysdeps/x86/jmp_buf-ssp.sym: New dummy file.
* sysdeps/x86_64/__longjmp.S: Include <jmp_buf-ssp.h>.
(__longjmp): Restore shadow stack pointer if shadow stack is
enabled, SHADOW_STACK_POINTER_OFFSET is defined and __longjmp
isn't defined for __longjmp_cancel.
* sysdeps/x86_64/setjmp.S: Include <jmp_buf-ssp.h>.
(__sigsetjmp): Save shadow stack pointer if shadow stack is
enabled and SHADOW_STACK_POINTER_OFFSET is defined.
feature_1 has X86_FEATURE_1_IBT and X86_FEATURE_1_SHSTK bits for CET
run-time control.
CET_ENABLED, IBT_ENABLED and SHSTK_ENABLED are defined to 1 or 0 to
indicate that if CET, IBT and SHSTK are enabled.
<tls-setup.h> is added to set up thread-local data.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
[BZ #22563]
* nptl/pthread_create.c: Include <tls-setup.h>.
(__pthread_create_2_1): Call tls_setup_tcbhead.
* sysdeps/generic/tls-setup.h: New file.
* sysdeps/x86/nptl/tls-setup.h: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym (FEATURE_1_OFFSET): New.
* sysdeps/x86_64/nptl/tcb-offsets.sym (FEATURE_1_OFFSET):
Likewise.
* sysdeps/i386/nptl/tls.h (tcbhead_t): Rename __glibc_reserved1
to feature_1.
* sysdeps/x86_64/nptl/tls.h (tcbhead_t): Likewise.
* sysdeps/x86/sysdep.h (X86_FEATURE_1_IBT): New.
(X86_FEATURE_1_SHSTK): Likewise.
(CET_ENABLED): Likewise.
(IBT_ENABLED): Likewise.
(SHSTK_ENABLED): Likewise.
As pointed out in a libc-alpha thread [1], the misc/tst-ofdlocks-compat
may fail in some specific Linux releases. This patch adds a comment
along with a link to discussion in the test source code.
No changes are expected.
* sysdeps/unix/sysv/linux/tst-ofdlocks-compat.c: Add a comment about
a kernel issue which lead to test failure in some cases.
[1] https://sourceware.org/ml/libc-alpha/2018-07/msg00243.html
This enables searching shared libraries in atomics/ when the hardware
supports LSE atomics of armv8.1 so one can provide optimized variants
of libraries in a portable way.
LSE atomics does not affect library abi, the new instructions can
interoperate with old ones.
I considered the earlier comments on the patch
https://sourceware.org/ml/libc-alpha/2018-04/msg00400.htmlhttps://sourceware.org/ml/libc-alpha/2018-04/msg00625.html
It turns out that the way glibc dynamic linker decides on the search
path is not very flexible: it wants to use hwcap bits and associated
strings. So some targets reuse hwcap bits for glibc internal purposes
to affect the search logic. But hwcap is an interface with the kernel,
glibc should not allocate bits in it for its internal logic as that
limits future hwcap extensions and confusing to users who expect to see
hwcap bits in ifunc resolvers. Instead of rewriting the dynamic linker
path logic (which affects all targets) this patch just uses the existing
mechanism, however this means that the path name has to be the hwcap
name "atomics" and cannot be changed to something more meaningful to
users.
It is hard to tell how much performance benefit this can give, in
principle armv8.1 atomics can be better optimized in the hardware, so it
can make a difference for synchronization heavy code. On some systems
such multilib setup may be the only viable way to get optimized
libraries used.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.h (HWCAP_IMPORTANT): Add
HWCAP_ATOMICS.
This partially reverts
commit f82e9672ad
Author: Siddhesh Poyarekar <siddhesh@sourceware.org>
aarch64: Allow overriding HWCAP_CPUID feature check using HWCAP_MASK
The idea was to make it possible to disable cpuid based ifunc resolution
in glibc by changing the hwcap mask which the user could already control.
However the hwcap mask has an orthogonal role: it specifies additional
library search paths for the dynamic linker. So "cpuid" got added to
the search paths when it was set in the default mask (HWCAP_IMPORTANT),
which is not useful behaviour, the hwcap masking should not be reused
in the cpu features code.
Meanwhile there is a tunable to set the cpu explicitly so it is possible
to disable the cpuid based dispatch without using a hwcap mask:
GLIBC_TUNABLES=glibc.tune.cpu=generic
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (init_cpu_features):
Use dl_hwcap without masking.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.h (HWCAP_IMPORTANT):
Remove HWCAP_CPUID.
From Zen onwards this will be enabled. It was disabled for the
Excavator case and will remain disabled.
Reviewd-by: Carlos O'Donell <carlos@redhat.com>
Define a new ABSOLUTE ABI for static linker's use with EI_ABIVERSION
where correct absolute (SHN_ABS) symbol run-time load semantics is
required. This way it can be ensured at static link time that a program
or DSO will not suffer from previous semantics where absolute symbols
were relocated by the base address, or symbols whose `st_value' is zero
silently ignored leading to a confusing "undefined symbol" error message
at load time, and instead "ELF file ABI version invalid" is printed with
old dynamic loaders, making it clear that there is an ABI version
incompatibility.
[BZ #19818]
[BZ #23307]
* libc-abis (ABSOLUTE): New ABI.
* sysdeps/unix/sysv/linux/mips/libc-abis (ABSOLUTE): New ABI.
* NEWS: Mention the new ABI.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The implementation falls back to renameat if renameat2 is not available
in the kernel (or in the kernel headers) and the flags argument is zero.
Without kernel support, a non-zero argument returns EINVAL, not ENOSYS.
This mirrors what the kernel does for invalid renameat2 flags.
Different than Linux, hurd does not need the OFD locks fix from
06ab719d30 (since OFD locks are current Linux specific). This in
turn allows hurd to not provide a fcntl compat symbol.
Checked on a i686-gnu with check-abi.
* sysdeps/mach/hurd/i386/libc.abilist [GLIBC_2.28] (fcntl): Remove
symbol.
Since the addition of the _Float128 API, strfromf128 and printf_size use
__printf_fp to print _Float128 values. This is achieved by setting the
'is_binary128' member of the 'printf_info' structure to one. Now that
the format of long double on powerpc64le is getting a third option, this
mechanism is reused for long double values that have binary128 format
(i.e.: when -mabi=ieeelongdouble).
This patch adds __printf_sizeieee128 as an exported symbol, but doesn't
provide redirections from printf_size, yet. All redirections will be
installed in a future commit, once all other functions that print or
read long double values with binary128 format are ready. In
__printf_fp, when 'is_binary128' is one, the floating-point argument is
treated as if it was of _Float128 type, regardless of the value of
'is_long_double', thus __printf_sizeieee128 sets 'is_binary128' to the
same value of 'is_long_double'. Otherwise, double values would not be
printed correctly.
Tested for powerpc64le.
Ideally sign should be bool, but sometimes (e.g. in powf) it's more
efficient to pass a non-zero value than 1 to indicate that the sign
should be set. The fixed size int is less ambigous than unsigned
long.
* sysdeps/ieee754/flt-32/e_powf.c (__powf): Use uint32_t.
(exp2f_inline): Likewise.
* sysdeps/ieee754/flt-32/math_config.h (__math_oflowf): Likewise.
(__math_uflowf): Likewise.
(__math_may_uflowf): Likewise.
(__math_divzerof): Likewise.
(__math_invalidf): Likewise.
* sysdeps/ieee754/flt-32/math_errf.c (xflowf): Likewise.
(__math_oflowf): Likewise.
(__math_uflowf): Likewise.
(__math_may_uflowf): Likewise.
(__math_divzerof): Likewise.
(__math_invalidf): Likewise.
The __libc_freeres framework does not extend to non-libc.so objects.
This causes problems in general for valgrind and mtrace detecting
unfreed objects in both libdl.so and libpthread.so. This change is
a pre-requisite to properly moving the malloc hooks out of malloc
since such a move now requires precise accounting of all allocated
data before destructors are run.
This commit adds a proper hook in libc.so.6 for both libdl.so and
for libpthread.so, this ensures that shm-directory.c which uses
freeit () to free memory is called properly. We also remove the
nptl_freeres hook and fall back to using weak-ref-and-check idiom
for a loaded libpthread.so, thus making this process similar for
all DSOs.
Lastly we follow best practice and use explicit free calls for
both libdl.so and libpthread.so instead of the generic hook process
which has undefined order.
Tested on x86_64 with no regressions.
Signed-off-by: DJ Delorie <dj@redhat.com>
Signed-off-by: Carlos O'Donell <carlos@redhat.com>