AVX512 functions in mathvec are used on machines with AVX512. An AVX2
wrapper is also provided and it can be used when the AVX512 version
isn't profitable. MathVec_Prefer_No_AVX512 is addded to cpu-features.
If glibc.tune.hwcaps=MathVec_Prefer_No_AVX512 is set in GLIBC_TUNABLES
environment variable, the AVX2 wrapper will be used.
Tested on x86-64 machines with and without AVX512. Also verified
glibc.tune.hwcaps=MathVec_Prefer_No_AVX512 on AVX512 machine.
[BZ #21967]
* sysdeps/x86/cpu-features.h (bit_arch_MathVec_Prefer_No_AVX512):
New.
(index_arch_MathVec_Prefer_No_AVX512): Likewise.
* sysdeps/x86/cpu-tunables.c (TUNABLE_CALLBACK (set_hwcaps)):
Handle MathVec_Prefer_No_AVX512.
* sysdeps/x86_64/fpu/multiarch/ifunc-mathvec-avx512.h
(IFUNC_SELECTOR): Return AVX2 version if MathVec_Prefer_No_AVX512
is set.
Since binutils 2.25 or later is required to build glibc, we can replace
AVX512F .byte sequences with AVX512F instructions.
Tested on x86-64 and x32. There are no code differences in libmvec.so
and libmvec.a.
* sysdeps/x86_64/fpu/svml_d_sincos8_core.S: Replace AVX512F
.byte sequences with AVX512F instructions.
* sysdeps/x86_64/fpu/svml_d_wrapper_impl.h: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf16_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_wrapper_impl.h: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf16_core_avx512.S:
Likewise.
Since the AVX2 version of mathvec functions uses FMA, it can only be
used when FMA is usable.
[BZ #21966]
* sysdeps/x86_64/fpu/multiarch/ifunc-mathvec-avx2.h
(IFUNC_SELECTOR): Don't use the AVX2 version if FMA isn't
usable.
If assembler doesn't support AVX512DQ, _dl_runtime_resolve_avx is used
to save the first 8 vector registers, which only saves the lower 256
bits of vector register, for lazy binding. When it is called on AVX512
platform, the upper 256 bits of ZMM registers are clobbered. Parameters
passed in ZMM registers will be wrong when the function is called the
first time. This patch requires binutils 2.24, whose assembler can store
and load ZMM registers, to build x86-64 glibc. Since mathvec library
needs assembler support for AVX512DQ, we disable mathvec if assembler
doesn't support AVX512DQ.
[BZ #20139]
* config.h.in (HAVE_AVX512_ASM_SUPPORT): Renamed to ...
(HAVE_AVX512DQ_ASM_SUPPORT): This.
* sysdeps/x86_64/configure.ac: Require assembler from binutils
2.24 or above.
(HAVE_AVX512_ASM_SUPPORT): Removed.
(HAVE_AVX512DQ_ASM_SUPPORT): New.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/dl-trampoline.S: Make HAVE_AVX512_ASM_SUPPORT
check unconditional.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c: Likewise.
* sysdeps/x86_64/multiarch/memcpy.S: Likewise.
* sysdeps/x86_64/multiarch/memcpy_chk.S: Likewise.
* sysdeps/x86_64/multiarch/memmove-avx512-no-vzeroupper.S:
Likewise.
* sysdeps/x86_64/multiarch/memmove-avx512-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/multiarch/memmove.S: Likewise.
* sysdeps/x86_64/multiarch/memmove_chk.S: Likewise.
* sysdeps/x86_64/multiarch/mempcpy.S: Likewise.
* sysdeps/x86_64/multiarch/mempcpy_chk.S: Likewise.
* sysdeps/x86_64/multiarch/memset-avx512-no-vzeroupper.S:
Likewise.
* sysdeps/x86_64/multiarch/memset-avx512-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/multiarch/memset.S: Likewise.
* sysdeps/x86_64/multiarch/memset_chk.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core_avx512.S: Check
HAVE_AVX512DQ_ASM_SUPPORT instead of HAVE_AVX512_ASM_SUPPORT.
* sysdeps/x86_64/fpu/multiarch/svml_d_exp8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_log8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_pow8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos8_core_avx512.:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_expf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_logf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_powf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf16_core_avx51:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sinf16_core_avx512.S:
Likewise.
current vector function declaration "#pragma omp declare simd notinbranch",
according to which vector sincos should have vector of pointers for second and
third parameters. It is fixed with implementation as wrapper to version
having second and third parameters as pointers.
[BZ #20024]
* sysdeps/x86/fpu/test-math-vector-sincos.h: New.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos2_core_sse4.S: Fixed ABI
of this implementation of vector function.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos4_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos8_core_avx512.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf4_core_sse4.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf8_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_sincos2_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_sincos4_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_sincos4_core_avx.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_sincos8_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf16_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf4_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf8_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf8_core_avx.S: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen2-wrappers.c: Use another wrapper
for testing vector sincos with fixed ABI.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen16-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen4-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen8-avx2-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen8-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx.c: New test.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx512.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx512.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf.c: Likewise.
* sysdeps/x86_64/fpu/Makefile: Added new tests.
Continuing fixes for ceil and floor functions not to raise the
"inexact" exception, this patch fixes the x86_64 SSE4.1 versions. The
roundss / roundsd instructions take an immediate operand that
determines the rounding mode and whether to raise "inexact"; this just
needs bit 3 set to disable "inexact", which this patch does.
Remark: we don't have an SSE4.1 version of trunc / truncf (using this
instruction with operand 11); I'd expect one to make sense, but of
course it should be benchmarked against the existing C code. I'll
file a bug in Bugzilla for the lack of such a version.
Tested for x86_64.
[BZ #15479]
* sysdeps/x86_64/fpu/multiarch/s_ceil.S (__ceil_sse41): Set bit 3
of immediate operand to rounding instruction.
* sysdeps/x86_64/fpu/multiarch/s_ceilf.S (__ceilf_sse41):
Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floor.S (__floor_sse41):
Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floorf.S (__floorf_sse41):
Likewise.
The x86_64 fma4 version of pow fails to disable contraction of
operations other than those explicitly intended to use fma
instructions, so resulting in large ulps errors on processors with
fma4 instructions, as in bug 18104 (165ulp for the test added for that
bug; error originally reported by "blaaa" on #glibc). This patch adds
$(config-cflags-nofma) for e_pow-fma4.c, corresponding to the use for
e_pow.c in sysdeps/ieee754/dbl-64/Makefile.
Tested for x86_64 on a processor with fma4.
[BZ #19003]
* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_pow-fma4.c): Add
$(config-cflags-nofma).
The change in 0b5395f052 replaced calls
to __get_cpu_features@plt followed by a mov from rax to rdx, with a
single macro LOAD_RTLD_GLOBAL_RO_RDX. It is pretty clear that there
was a typo in s_floorf and __nearbyint due to which the (now incorrect)
mov was not removed. This patch removes that mov.
* sysdeps/x86_64/fpu/multiarch/s_floorf.S (__floorf): Remove
unnecessary movq.
* sysdeps/x86_64/fpu/multiarch/s_nearbyint.S (__nearbyint):
Likewise.
Here is implementation of vectorized sin containing SSE, AVX,
AVX2 and AVX512 versions according to Vector ABI
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
* bits/libm-simd-decl-stubs.h: Added stubs for sin.
* math/bits/mathcalls.h: Added sin declaration with __MATHCALL_VEC.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New versions added.
* sysdeps/x86/fpu/bits/math-vector.h: SIMD declaration for sin.
* sysdeps/x86_64/fpu/Makefile (libmvec-support): Added new files.
* sysdeps/x86_64/fpu/Versions: New versions added.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenerated.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin2_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin2_core_sse4.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin4_core_avx2.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core_avx512.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin2_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin4_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin4_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin8_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin_data.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin_data.h: New file.
* sysdeps/x86_64/fpu/test-double-vlen2-wrappers.c: Added vector sin test.
* sysdeps/x86_64/fpu/test-double-vlen2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8.c: Likewise.
* NEWS: Mention addition of x86_64 vector sin.
Here is implementation of vectorized cosf containing SSE, AVX,
AVX2 and AVX512 versions according to Vector ABI
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
* sysdeps/x86_64/fpu/Makefile (libmvec-support): Added new files.
* sysdeps/x86_64/fpu/Versions: New versions added.
* sysdeps/x86_64/fpu/svml_s_cosf4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf4_core_sse4.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf8_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf8_core_avx2.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf16_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core_avx512.S: New file.
* sysdeps/x86_64/fpu/svml_s_wrapper_impl.h: New file.
* sysdeps/x86_64/fpu/svml_s_cosf_data.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf_data.h: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New versions added.
* sysdeps/x86/fpu/bits/math-vector.h: Added SIMD declaration for cosf.
* NEWS: Mention addition of x86_64 vector cosf.
Here is implementation of cos containing SSE, AVX, AVX2 and AVX512
versions according to Vector ABI which had been discussed in
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
Vector math library build and ABI testing enabled by default for x86_64.
* sysdeps/x86_64/fpu/Makefile: New file.
* sysdeps/x86_64/fpu/Versions: New file.
* sysdeps/x86_64/fpu/svml_d_cos_data.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos_data.h: New file.
* sysdeps/x86_64/fpu/svml_d_cos2_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos4_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos4_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos8_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_wrapper_impl.h: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos2_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos2_core_sse4.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos4_core_avx2.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core_avx512.S: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/x86/fpu/bits/math-vector.h: Added SIMD declaration for cos.
* math/bits/mathcalls.h: Added cos declaration with __MATHCALL_VEC.
* sysdeps/x86_64/configure.ac: Options for libmvec build.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/sysdep.h (cfi_offset_rel_rsp): New macro.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New file.
* manual/install.texi (Configuring and compiling): Document
--disable-mathvec.
* INSTALL: Regenerated.
* NEWS: Mention addition of libmvec and x86_64 vector cos.
Similar to various other bugs in this area, some asin implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86, powerpc and mips64.
[BZ #16351]
* sysdeps/i386/fpu/e_asin.S (dbl_min): New object.
(MO): New macro.
(__ieee754_asin): Force underflow exception for results with small
absolute value.
* sysdeps/i386/fpu/e_asinf.S (flt_min): New object.
(MO): New macro.
(__ieee754_asinf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/dbl-64/e_asin.c: Include <float.h> and <math.h>.
(__ieee754_asin): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/flt-32/e_asinf.c: Include <float.h>.
(__ieee754_asinf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128/e_asinl.c: Include <float.h>.
(__ieee754_asinl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Include <float.h>.
(__ieee754_asinl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-96/e_asinl.c: Include <float.h>.
(__ieee754_asinl): Force underflow exception for results with
small absolute value.
* sysdeps/x86_64/fpu/multiarch/e_asin.c [HAVE_FMA4_SUPPORT]:
Include <math.h>.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 16351.
* math/auto-libm-test-out: Regenerated.
This patch fixes bug 15319, missing underflows from atan / atan2 when
the result of atan is very close to its small argument (or that of
atan2 is very close to the ratio of its arguments, which may be an
exact division).
The usual approach of doing an underflowing computation if the
computed result is subnormal is followed. For 32-bit x86, there are
extra complications: the inline __ieee754_atan2 in bits/mathinline.h
needs to be disabled for float and double because other libm functions
using it generally rely on getting proper underflow exceptions from
it, while the out-of-line functions have to remove excess range and
precision from the underflowing result so as to return an exact 0 in
the case where errno should be set for underflow to 0. (The failures
I saw without that are similar to those Carlos reported for other
functions, where I haven't seen a response to
<https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>
confirming if my diagnosis is correct. Arguably all libm functions
with float and double returns should remove excess range and
precision, but that's a separate matter.)
The x86_64 long double case reported in a comment in bug 15319 is not
a bug (it's an argument of LDBL_MIN, and x86_64 is an after-rounding
architecture so the correct IEEE result is not to raise underflow in
the given rounding mode, in addition to treating the result as an
exact LDBL_MIN being within the newly clarified documentation of
accuracy goals). I'm presuming that the fpatan instruction can be
trusted to raise appropriate exceptions when the (long double) result
underflows (after rounding) and so no changes are needed for x86 /
x86_64 long double functions here; empirically this is the case for
the cases covered in the testsuite, on my system.
Tested for x86_64, x86, powerpc and mips64. Only 32-bit x86 needs
ulps updates (for the changes to inlines meaning some functions no
longer get excess precision from their __ieee754_atan2* calls).
[BZ #15319]
* sysdeps/i386/fpu/e_atan2.S (dbl_min): New object.
(MO): New macro.
(__ieee754_atan2): For results with small absolute value, force
underflow exception and remove excess range and precision from
return value.
* sysdeps/i386/fpu/e_atan2f.S (flt_min): New object.
(MO): New macro.
(__ieee754_atan2f): For results with small absolute value, force
underflow exception and remove excess range and precision from
return value.
* sysdeps/i386/fpu/s_atan.S (dbl_min): New object.
(MO): New macro.
(__atan): For results with small absolute value, force underflow
exception and remove excess range and precision from return value.
* sysdeps/i386/fpu/s_atanf.S (flt_min): New object.
(MO): New macro.
(__atanf): For results with small absolute value, force underflow
exception and remove excess range and precision from return value.
* sysdeps/ieee754/dbl-64/e_atan2.c: Include <float.h> and
<math.h>.
(__ieee754_atan2): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/dbl-64/s_atan.c: Include <float.h> and
<math_private.h>.
(atan): Force underflow exception for results with small absolute
value.
* sysdeps/ieee754/flt-32/s_atanf.c: Include <float.h>.
(__atanf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_atanl.c: Include <float.h> and
<math.h>.
(__atanl): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128ibm/s_atanl.c: Include <float.h>.
(__atanl): Force underflow exception for results with small
absolute value.
* sysdeps/x86/fpu/bits/mathinline.h
[!__SSE2_MATH__ && !__x86_64__ && __LIBC_INTERNAL_MATH_INLINES]
(__ieee754_atan2): Only define inline for long double.
* sysdeps/x86_64/fpu/multiarch/e_atan2.c
[HAVE_FMA4_SUPPORT || HAVE_AVX_SUPPORT]: Include <math.h>.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 15319. Add more tests of atan2.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (casin_test_data): Do not mark underflow
exceptions as possibly missing for bug 15319.
(casinh_test_data): Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Update.
This patch fixes bug 16315, bad pow handling of overflow/underflow in
non-default rounding modes. Tests of pow are duly converted to
ALL_RM_TEST to run all tests in all rounding modes.
There are two main issues here. First, various implementations
compute a negative result by negating a positive result, but this
yields inappropriate overflow / underflow values for directed
rounding, so either overflow / underflow results need recomputing in
the correct sign, or the relevant overflowing / underflowing operation
needs to be made to have a result of the correct sign. Second, the
dbl-64 implementation sets FE_TONEAREST internally; in the overflow /
underflow case, the result needs recomputing in the original rounding
mode.
Tested x86_64 and x86 and ulps updated accordingly.
[BZ #16315]
* sysdeps/i386/fpu/e_pow.S (__ieee754_pow): Ensure possibly
overflowing or underflowing operations take place with sign of
result.
* sysdeps/i386/fpu/e_powf.S (__ieee754_powf): Likewise.
* sysdeps/i386/fpu/e_powl.S (__ieee754_powl): Likewise.
* sysdeps/ieee754/dbl-64/e_pow.c: Include <math.h>.
(__ieee754_pow): Recompute overflowing and underflowing results in
original rounding mode.
* sysdeps/x86/fpu/powl_helper.c: Include <stdbool.h>.
(__powl_helper): Allow negative argument X and scale negated value
as needed. Avoid passing value outside [-1, 1] to f2xm1.
* sysdeps/x86_64/fpu/e_powl.S (__ieee754_powl): Ensure possibly
overflowing or underflowing operations take place with sign of
result.
* sysdeps/x86_64/fpu/multiarch/e_pow.c [HAVE_FMA4_SUPPORT]:
Include <math.h>.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (pow_test): Use ALL_RM_TEST.
(pow_tonearest_test_data): Remove.
(pow_test_tonearest): Likewise.
(pow_towardzero_test_data): Likewise.
(pow_test_towardzero): Likewise.
(pow_downward_test_data): Likewise.
(pow_test_downward): Likewise.
(pow_upward_test_data): Likewise.
(pow_test_upward): Likewise.
(main): Don't call removed functions.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
My recent exp patch introduced warnings about implicit __isinf
declarations in exp because e_exp.c didn't include <math.h>. This
patch fixes this. Because <math.h> can't be included after
<math_private.h> (because of macro definitions of __nan*), it was
necessary to put an include in sysdeps/x86_64/fpu/multiarch/e_exp.c as
well.
Tested x86_64.
* sysdeps/ieee754/dbl-64/e_exp.c: Include <math.h>.
* sysdeps/x86_64/fpu/multiarch/e_exp.c
[HAVE_FMA4_SUPPORT || HAVE_AVX_SUPPORT]: Likewise.
While these instructions accept memory operands, only one operand
may be a memory operand. Giving two operands xm constraints gives
the compiler the option of using memory for both operands, which
would result in invalid assembly code. Using x for all operands is
more appropriate, as most x86_64 calling conventions will pass the
arguments in registers anyway.
2013-05-15 Peter Collingbourne <pcc@google.com>
* sysdeps/x86_64/fpu/multiarch/s_fma.c (__fma_fma4): Replace xm
constraints with x constraints.
* sysdeps/x86_64/fpu/multiarch/s_fmaf.c (__fmaf_fma4): Likewise.
There is no problem with strcmp, it doesn't use the YMM registers.
The math routines might since gcc perhaps generates such code.
Introduce bit_YMM_USBALE and use it in the math routines.
Provide macros so that the internal users can, if possible, directly use
the new instructions.
Also fix up the mathinline.h header when compiling with SSE4.1 enabled.