This patch adds support for *f128 function aliases on platforms where
long double has the binary128 format (and thus GCC 7 provides the
_Float128 type with the same ABI as long double but as a distinct type
in terms of C type compatibility). This is the same API as provided
in glibc 2.26 for powerpc64le / x86_64 / x86 / ia64 where _Float128
has a different format from long double, with the bulk of the API
coming from TS 18661-3. All the functions alias the corresponding
long double functions, and __* function names are not provided since
those are only needed once for each floating-point format, not more
than once for different types with the same format (so for example,
-ffinite-math-only maps foof128 to __fool_finite, while type-generic
macros end up calling e.g. __issignalingl for _Float128 arguments on
such platforms).
The preparation for this feature was done in previous patches, so this
one just needs to add the relevant makefile and header definitions,
and update macro definitions of libm_alias_ldouble_other_r, to turn on
the feature, and update documentation and ABI baselines.
Tested (a) for x86_64, (b) for aarch64, (c) with build-many-glibcs.py
with both GCC 6 and GCC 7.
* sysdeps/ieee754/ldbl-128/Makeconfig: New file.
* sysdeps/ieee754/ldbl-128/bits/floatn.h: Likewise.
* sysdeps/ieee754/ldbl-128/float128-abi.h: Likewise.
* sysdeps/generic/libm-alias-ldouble.h: Include <bits/floatn.h>.
[__HAVE_FLOAT128 && !__HAVE_DISTINCT_FLOAT128]
(libm_alias_ldouble_other_r): Also create _Float128 alias.
* sysdeps/ieee754/ldbl-opt/libm-alias-ldouble.h: Include
<bits/floatn.h>.
[__HAVE_FLOAT128 && !__HAVE_DISTINCT_FLOAT128]
(libm_alias_ldouble_other_r): Also create _Float128 alias.
* manual/math.texi (Mathematics): Document additional architecture
support for _Float128.
* sysdeps/unix/sysv/linux/aarch64/libc.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
glibc has an add-ons mechanism to allow additional software to be
integrated into the glibc build. Such add-ons may be within the glibc
source tree, or outside it at a path passed to the --enable-add-ons
configure option.
localedata and crypt were once add-ons, distributed in separate
release tarballs, but long since stopped using that mechanism.
Linuxthreads was always an add-on. Ports spent some time as an add-on
with separate release tarballs, then was first moved into the glibc
source tree, then had its sysdeps files moved into the main sysdeps
hierarchy so the add-ons mechanism was no longer used. NPTL spent
some time as an add-on in the main glibc tree before stopping using
the add-on mechanism. libidn used to have separate release tarballs
but no longer does so, but still uses the add-ons mechanism within the
glibc source tree. Various other software has supported building with
the add-ons mechanism at times in the past, but I don't think any is
still widely used.
Add-ons involve significant, little-used complexity in the glibc build
system, and make it hard to understand what the space of possible
glibc configurations is. This patch removes the add-ons mechanism.
libidn is now built via the Subdirs mechanism to cause any
configuration using sysdeps/unix/inet to build libidn; HAVE_LIBIDN
(which effectively means shared libraries are available) is now
defined via sysdeps/unix/inet/configure. Various references to
add-ons around the source tree are removed (in the case of maint.texi,
the example list of sysdeps directories is still very out of date).
Externally maintained ports should now put their files in the normal
sysdeps directory structure rather than being arranged as add-ons;
they probably need to change e.g. elf.h anyway, rather than actually
being able to work just as a drop-in subtree. Hurd libpthread should
be arranged similarly to NPTL, so some files might go in a
hurd-pthreads (or similar) top-level directory in glibc, while sysdeps
files should go in the normal sysdeps directory structure (possibly in
hurd or hurd-pthreads subdirectories, just as there are nptl
subdirectories in the sysdeps tree).
Tested for x86_64, and with build-many-glibcs.py.
* configure.ac (--enable-add-ons): Remove option.
(machine): Do not mention add-ons in comment.
(LIBC_PRECONFIGURE): Likewise.
(add_ons): Remove variable and sanity checks and logic to locate
add-ons.
(add_ons_automatic): Remove variable.
(configured_add_ons): Likewise.
(add_ons_sfx): Likewise.
(add_ons_pfx): Likewise.
(add_on_subdirs): Likewise.
(sysnames_add_ons): Likewise. Remove loop over add-ons and
consideration of add-ons in Implies handling.
(sysdeps_add_ons): Likewise.
* configure: Regenerated.
* libidn/configure.ac: Remove.
* libidn/configure: Likewise.
* sysdeps/unix/inet/configure.ac: New file.
* sysdeps/unix/inet/configure: New generated file.
* sysdeps/unix/inet/Subdirs: Add libidn.
* Makeconfig (sysdeps-srcdirs): Remove variable.
(+sysdep_dirs): Do not include $(sysdeps-srcdirs).
($(common-objpfx)config.status): Do not depend on add-on files.
($(common-objpfx)shlib-versions.v.i): Do not mention add-ons in
comment.
(all-subdirs): Do not include $(add-on-subdirs).
* Makefile (dist-prepare): Do not use $(sysdeps-add-ons).
* config.make.in (add-ons): Remove variable.
(add-on-subdirs): Likewise.
(sysdeps-add-ons): Likewise.
* manual/Makefile (add-chapters): Remove.
($(objpfx)texis): Do not depend on $(add-chapters).
(nonexamples): Do not handle $(add-chapters).
(examples): Do not handle $(add-ons).
(chapters.% top-menu.%): Do not pass '$(add-chapters)' to
libc-texinfo.sh.
* manual/install.texi (Installation): Do not mention add-ons.
(--enable-add-ons): Do not document configure option.
* INSTALL: Regenerated.
* manual/libc-texinfo.sh: Do not handle $2 add-ons argument.
* manual/maint.texi (Hierarchy Conventions): Do not mention
add-ons.
* scripts/build-many-glibcs.py (Glibc.build_glibc): Do not use
--enable-add-ons.
* scripts/gen-sorted.awk: Do not handle Subdirs files from
add-ons.
* scripts/test-installation.pl: Do not handle glibc-compat add-on.
* sysdeps/nptl/Makeconfig: Do not mention add-ons in comment.
without wrapper on aarch64:
powf reciprocal-throughput: 4.2x faster
powf latency: 2.6x faster
old worst-case error: 1.11 ulp
new worst-case error: 0.82 ulp
aarch64 .text size: -780 bytes
aarch64 .rodata size: +144 bytes
powf(x,y) is implemented as exp2(y*log2(x)) with the same algorithms
that are used in exp2f and log2f, except that the log2f polynomial is
larger for extra precision and its output (and exp2f input) may be
scaled by a power of 2 (POWF_SCALE) to simplify the argument reduction
step of exp2 (possible when efficient round and convert toint operation
is available).
The special case handling tries to minimize the checks in the hot path.
When the input of exp2_inline is checked, int arithmetics is used as
that was faster on the tested aarch64 cores.
* math/Makefile (type-float-routines): Add e_powf_log2_data.
* sysdeps/ieee754/flt-32/e_powf.c: New implementation.
* sysdeps/ieee754/flt-32/e_powf_log2_data.c: New file.
* sysdeps/ieee754/flt-32/math_config.h (__powf_log2_data): Define.
(issignalingf_inline): Likewise.
(POWF_LOG2_TABLE_BITS): Likewise.
(POWF_LOG2_POLY_ORDER): Likewise.
(POWF_SCALE_BITS): Likewise.
(POWF_SCALE): Likewise.
* sysdeps/i386/fpu/e_powf_log2_data.c: New file.
* sysdeps/ia64/fpu/e_powf_log2_data.c: New file.
* sysdeps/m68k/m680x0/fpu/e_powf_log2_data.c: New file.
Similar to the new logf: double precision arithmetics and a small
lookup table is used. The argument reduction step is the same as in
the new logf.
without wrapper on aarch64:
log2f reciprocal-throughput: 2.3x faster
log2f latency: 2.1x faster
old worst case error: 1.72 ulp
new worst case error: 0.75 ulp
aarch64 .text size: -252 bytes
aarch64 .rodata size: +244 bytes
* math/Makefile (type-float-routines): Add e_log2f_data.
* sysdeps/ieee754/flt-32/e_log2f.c: New implementation.
* sysdeps/ieee754/flt-32/e_log2f_data.c: New file.
* sysdeps/ieee754/flt-32/math_config.h (__log2f_data): Define.
(LOG2F_TABLE_BITS, LOG2F_POLY_ORDER): Define.
* sysdeps/i386/fpu/e_log2f_data.c: New file.
* sysdeps/ia64/fpu/e_log2f_data.c: New file.
* sysdeps/m68k/m680x0/fpu/e_log2f_data.c: New file.
without wrapper on aarch64:
logf reciprocal-throughput: 2.2x faster
logf latency: 1.9x faster
old worst case error: 0.89 ulp
new worst case error: 0.82 ulp
aarch64 .text size: -356 bytes
aarch64 .rodata size: +240 bytes
Uses double precision arithmetics and a lookup table to allow smaller
polynomial and avoid the use of division.
Data is in a separate translation unit with fixed layout to prevent the
compiler generating suboptimal literal access.
Errors are handled inline according to POSIX rules, but this patch
keeps the wrapper with SVID compatible error handling.
Needs libm-test-ulps adjustment for clogf in non-nearest rounding mode.
* math/Makefile (type-float-routines): Add e_logf_data.
* sysdeps/ieee754/flt-32/e_logf.c: New implementation.
* sysdeps/ieee754/flt-32/e_logf_data.c: New file.
* sysdeps/ieee754/flt-32/math_config.h (__logf_data): Define.
(LOGF_TABLE_BITS, LOGF_POLY_ORDER): Define.
* sysdeps/i386/fpu/e_logf_data.c: New file.
* sysdeps/ia64/fpu/e_logf_data.c: New file.
* sysdeps/m68k/m680x0/fpu/e_logf_data.c: New file.
Based on new expf and exp2f code from
https://github.com/ARM-software/optimized-routines/
with wrapper on aarch64:
expf reciprocal-throughput: 2.3x faster
expf latency: 1.7x faster
without wrapper on aarch64:
expf reciprocal-throughput: 3.3x faster
expf latency: 1.7x faster
without wrapper on aarch64:
exp2f reciprocal-throughput: 2.8x faster
exp2f latency: 1.3x faster
libm.so size on aarch64:
.text size: -152 bytes
.rodata size: -1740 bytes
expf/exp2f worst case nearest rounding error: 0.502 ulp
worst case non-nearest rounding error: 1 ulp
Error checks are inline and errno setting is in separate tail called
functions, but the wrappers are kept in this patch to handle the
_LIB_VERSION==_SVID_ case. (So e.g. errno is set twice for expf calls
and once for __expf_finite calls on targets where the new code is used.)
Double precision arithmetics is used which is expected to be faster on
most targets (including soft-float) than using single precision and it
is easier to get good precision result with it.
Const data is kept in a separate translation unit which complicates
maintenance a bit, but is expected to give good code for literal loads
on most targets and allows sharing data across expf, exp2f and powf.
(This data is disabled on i386, m68k and ia64 which have their own
expf, exp2f and powf code.)
Some details may need target specific tweaks:
- best convert and round to int operation in the arg reduction may be
different across targets.
- code was optimized on fma target, optimal polynomial eval may be
different without fma.
- gcc does not always generate good code for fp bit representation
access via unions or it may be inherently slow on some targets.
The libm-test-ulps will need adjustment because..
- The argument reduction ideally uses nearest rounded rint, but that is
not efficient on most targets, so the polynomial can get evaluated on a
wider interval in non-nearest rounding mode making 1 ulp errors common
in that case.
- The polynomial is evaluated such that it may have 1 ulp error on
negative tiny inputs with upward rounding.
* math/Makefile (type-float-routines): Add math_errf and e_exp2f_data.
* sysdeps/aarch64/fpu/math_private.h (TOINT_INTRINSICS): Define.
(roundtoint, converttoint): Likewise.
* sysdeps/ieee754/flt-32/e_expf.c: New implementation.
* sysdeps/ieee754/flt-32/e_exp2f.c: New implementation.
* sysdeps/ieee754/flt-32/e_exp2f_data.c: New file.
* sysdeps/ieee754/flt-32/math_config.h: New file.
* sysdeps/ieee754/flt-32/math_errf.c: New file.
* sysdeps/ieee754/flt-32/t_exp2f.h: Remove.
* sysdeps/i386/fpu/e_exp2f_data.c: New file.
* sysdeps/i386/fpu/math_errf.c: New file.
* sysdeps/ia64/fpu/e_exp2f_data.c: New file.
* sysdeps/ia64/fpu/math_errf.c: New file.
* sysdeps/m68k/m680x0/fpu/e_exp2f_data.c: New file.
* sysdeps/m68k/m680x0/fpu/math_errf.c: New file.
This patch adds SSE4.1 versions of trunc and truncf, using the roundsd
/ roundss instructions, similar to the versions of ceil, floor, rint
and nearbyint functions we already have. In my testing with the glibc
benchtests these are about 30% faster than the C versions for double,
20% faster for float.
Tested for x86_64.
[BZ #20142]
* sysdeps/x86_64/fpu/multiarch/Makefile (libm-sysdep_routines):
Add s_trunc-c, s_truncf-c, s_trunc-sse4_1 and s_truncf-sse4_1.
* sysdeps/x86_64/fpu/multiarch/s_trunc-c.c: New file.
* sysdeps/x86_64/fpu/multiarch/s_trunc-sse4_1.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_trunc.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_truncf-c.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_truncf-sse4_1.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_truncf.c: Likewise.
This patch obsoletes the pow10, pow10f and pow10l functions (makes
them into compat symbols, not available for new ports or static
linking). The exp10 names for these functions are standardized (in TS
18661-4) and were added in the same glibc version (2.1) as pow10 so
source code can change to use them without any loss of portability.
Since pow10 is deliberately not provided for _Float128, only exp10,
this slightly simplifies moving to the new wrapper templates in the
!LIBM_SVID_COMPAT case, by avoiding needing to arrange for pow10,
pow10f and pow10l to be defined by those templates.
Tested for x86_64, and with build-many-glibcs.py.
* manual/math.texi (pow10): Do not document.
(pow10f): Likewise.
(pow10l): Likewise.
* math/bits/mathcalls.h [__USE_GNU] (pow10): Do not declare.
* math/bits/math-finite.h [__USE_GNU] (pow10): Likewise.
* math/libm-test-exp10.inc (pow10_test): Remove.
(do_test): Do not call pow10.
* math/w_exp10_compat.c (pow10): Make into compat symbol.
[NO_LONG_DOUBLE] (pow10l): Likewise.
* math/w_exp10f_compat.c (pow10f): Likewise.
* math/w_exp10l_compat.c (pow10l): Likewise.
* sysdeps/ia64/fpu/e_exp10.S: Include <shlib-compat.h>.
(pow10): Make into compat symbol.
* sysdeps/ia64/fpu/e_exp10f.S: Include <shlib-compat.h>.
(pow10f): Make into compat symbol.
* sysdeps/ia64/fpu/e_exp10l.S: Include <shlib-compat.h>.
(pow10l): Make into compat symbol.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Remove
pow10.
(CFLAGS-nldbl-pow10.c): Remove variable..
* sysdeps/ieee754/ldbl-opt/nldbl-pow10.c: Remove file.
* sysdeps/ieee754/ldbl-opt/w_exp10_compat.c (pow10l): Condition on
[SHLIB_COMPAT (libm, GLIBC_2_1, GLIBC_2_27)].
* sysdeps/ieee754/ldbl-opt/w_exp10l_compat.c (compat_symbol):
Undefine and redefine.
(pow10l): Make into compat symbol.
* sysdeps/aarch64/libm-test-ulps: Remove pow10 ulps.
* sysdeps/alpha/fpu/libm-test-ulps: Likewise.
* sysdeps/arm/libm-test-ulps: Likewise.
* sysdeps/hppa/fpu/libm-test-ulps: Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Likewise.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
* sysdeps/microblaze/libm-test-ulps: Likewise.
* sysdeps/mips/mips32/libm-test-ulps: Likewise.
* sysdeps/mips/mips64/libm-test-ulps: Likewise.
* sysdeps/nios2/libm-test-ulps: Likewise.
* sysdeps/powerpc/fpu/libm-test-ulps: Likewise.
* sysdeps/powerpc/nofpu/libm-test-ulps: Likewise.
* sysdeps/s390/fpu/libm-test-ulps: Likewise.
* sysdeps/sh/libm-test-ulps: Likewise.
* sysdeps/sparc/fpu/libm-test-ulps: Likewise.
* sysdeps/tile/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch completes the ucontext.h namespace fixes by fixing issues
related to the use of struct sigcontext as mcontext_t, and inclusion
of <bits/sigcontext.h> even when struct sigcontext is not so used.
Inclusion of <bits/sigcontext.h> by <sys/ucontext.h> is removed; the
way to get the sigcontext structure is by including <signal.h> (in a
context where __USE_MISC is defined); the sysdeps/generic version of
sys/ucontext.h keeps the inclusion by necessity, with a comment about
how this is not namespace-clean, but the only configuration that used
it, MicroBlaze, gets its own version of the header in this patch.
Where mcontext_t was typedefed to struct sigcontext, the contents of
struct sigcontext are inserted (with appropriate namespace handling to
prefix fields with __ when __USE_MISC is not defined); review should
check that this has been done correctly in each case, whether the
definition of struct sigcontext comes from glibc headers or from the
Linux kernel. This changes C++ name mangling on affected
architectures (which do not include x86_64/x86).
Tested for x86_64, and with build-many-glibcs.py.
2017-08-14 Joseph Myers <joseph@codesourcery.com>
[BZ #21457]
* sysdeps/arm/sys/ucontext.h: Do not include <bits/sigcontext.h>.
* sysdeps/generic/sys/ucontext.h: Add comment about use of struct
sigcontext and namespace requirements.
* sysdeps/i386/sys/ucontext.h: Do not include <bits/sigcontext.h>.
* sysdeps/m68k/sys/ucontext.h: Likewise.
* sysdeps/mips/sys/ucontext.h: Likewise. Include <bits/types.h>.
* sysdeps/unix/sysv/linux/aarch64/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
(__ctx): Define earlier.
(mcontext_t): Define structure contents rather than using struct
sigcontext.
* sysdeps/unix/sysv/linux/aarch64/ucontext_i.sym (oEXTENSION): Use
__glibc_reserved1 instead of __reserved.
* sysdeps/unix/sysv/linux/alpha/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
(__ctx): Define earlier.
(mcontext_t): Define structure contents rather than using struct
sigcontext.
* sysdeps/unix/sysv/linux/alpha/ucontext-offsets.sym: Use
mcontext_t instead of struct sigcontext.
* sysdeps/unix/sysv/linux/arm/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
(__ctx): Define earlier.
(mcontext_t): Define structure contents rather than using struct
sigcontext.
* sysdeps/unix/sysv/linux/hppa/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
(__ctx): Define earlier.
(mcontext_t): Define structure contents rather than using struct
sigcontext.
* sysdeps/unix/sysv/linux/ia64/makecontext.c (__makecontext): Use
mcontext_t instead of struct sigcontext.
* sysdeps/unix/sysv/linux/ia64/sigcontext-offsets.sym: Use
mcontext_t instead of struct sigcontext.
* sysdeps/unix/sysv/linux/ia64/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
(__ctx): New macro.
(struct __ia64_fpreg_mcontext): New type.
(mcontext_t): Define structure contents rather than using struct
sigcontext.
(_SC_GR0_OFFSET): Use mcontext_t instead of struct sigcontext.
(uc_sigmask): Define using __ctx.
(uc_stack): Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/procfs.h: Include
<bits/sigcontext.h>.
* sysdeps/unix/sysv/linux/ia64/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
* sysdeps/unix/sysv/linux/microblaze/sys/ucontext.h: New file.
* sysdeps/unix/sysv/linux/mips/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
* sysdeps/unix/sysv/linux/nios2/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
* sysdeps/unix/sysv/linux/powerpc/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
* sysdeps/unix/sysv/linux/s390/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
* sysdeps/unix/sysv/linux/sh/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
* sysdeps/unix/sysv/linux/sparc/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
* sysdeps/unix/sysv/linux/tile/sys/ucontext.h: Do not include
<bits/sigcontext.h>.
(__ctx): Define earlier.
(mcontext_t): Define structure contents rather than using struct
sigcontext.
* sysdeps/unix/sysv/linux/x86/sys/ucontext.h: Do not include
<bits/sigcontext.h>. Include <bits/types.h>.
* conform/Makefile (test-xfail-XPG42/signal.h/conform): Remove.
(test-xfail-XPG42/sys/wait.h/conform): Likewise.
(test-xfail-XPG42/ucontext.h/conform): Likewise.
(test-xfail-UNIX98/signal.h/conform): Likewise.
(test-xfail-UNIX98/sys/wait.h/conform): Likewise.
(test-xfail-UNIX98/ucontext.h/conform): Likewise.
(test-xfail-XOPEN2K/signal.h/conform): Likewise.
(test-xfail-XOPEN2K/sys/wait.h/conform): Likewise.
(test-xfail-XOPEN2K/ucontext.h/conform): Likewise.
(test-xfail-POSIX2008/signal.h/conform): Likewise.
(test-xfail-POSIX2008/sys/wait.h/conform): Likewise.
(test-xfail-XOPEN2K8/signal.h/conform): Likewise.
(test-xfail-XOPEN2K8/sys/wait.h/conform): Likewise.
This patch obsoletes support for SVID libm error handling (the system
where a user-defined function matherr is called on a libm function
error; only enabled if you also set _LIB_VERSION = _SVID_ or
_LIB_VERSION = _XOPEN_) and the use of the _LIB_VERSION global
variable to control libm error handling. matherr and _LIB_VERSION are
made into compat symbols, not supported for new ports or for static
linking. The libieee.a object file (which sets _LIB_VERSION = _IEEE_,
so disabling errno setting for some functions) is also removed, and
all the related definitions are removed from math.h.
The manual already recommends against using matherr, and it's already
not supported for _Float128 functions (those use new wrappers that
don't support matherr, only errno) - this patch means that it becomes
possible to e.g. add sinf32 as an alias to sinf without that resulting
in undesired matherr support in sinf32 for existing glibc ports.
matherr support is not part of any standard supported by glibc (it was
removed in XPG4).
Because matherr is a function to be defined by the user, of course
user programs defining such a function will still continue to link; it
just quietly won't be used. If they try to write to the library's
copy of _LIB_VERSION to enable SVID error handling, however, they will
get a link error (but if they define their own _LIB_VERSION variable,
they won't).
I expect the most likely case of build failures from this patch to be
programs with unconditional cargo-culted uses of -lieee (based on a
notion of "I want IEEE floating point", not any actual requirement for
that library).
Ideally, the new-port-or-static-linking case would use the new
wrappers used for _Float128. This is not implemented in this patch,
because of the complication of architecture-specific (powerpc32 and
sparc) sqrt wrappers that use _LIB_VERSION and __kernel_standard
directly. Thus, the old wrappers and __kernel_standard are still
built unconditionally, and _LIB_VERSION still exists in static libm.
But when the old wrappers and __kernel_standard are built in the
non-compat case, _LIB_VERSION and matherr are defined as macros so
code to support those features isn't actually built into static libm
or new ports' shared libm after this patch.
I intend to move to the new wrappers for static libm and new ports in
followup patches. I believe the sqrt wrappers for powerpc32 and sparc
can reasonably be removed. GCC already optimizes the normal case of
sqrt by generating code that uses a hardware instruction and only
calls the sqrt function if the argument was negative (if
-fno-math-errno, of course, it just uses the hardware instruction
without any check for negative argument being needed). Thus those
wrappers will only actually get called in the case of negative
arguments, which is not a case it makes sense to optimize for. But
even without removing the powerpc32 and sparc wrappers it should still
be possible to move to the new wrappers for static libm and new ports,
just without having those dubious architecture-specific optimizations
in static libm.
Everything said about matherr equally applies to matherrf and matherrl
(IA64-specific, undocumented), except that the structure of IA64 libm
means it won't be converted to using the new wrappers (it doesn't use
the old ones either, but its own error-handling code instead).
As with other tests of compat symbols, I expect test-matherr and
test-matherr-2 to need to become appropriately conditional once we
have a system for disabling such tests for ports too new to have the
relevant symbols.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/math.h [__USE_MISC] (_LIB_VERSION_TYPE): Remove.
[__USE_MISC] (_LIB_VERSION): Likewise.
[__USE_MISC] (struct exception): Likewise.
[__USE_MISC] (matherr): Likewise.
[__USE_MISC] (DOMAIN): Likewise.
[__USE_MISC] (SING): Likewise.
[__USE_MISC] (OVERFLOW): Likewise.
[__USE_MISC] (UNDERFLOW): Likewise.
[__USE_MISC] (TLOSS): Likewise.
[__USE_MISC] (PLOSS): Likewise.
[__USE_MISC] (HUGE): Likewise.
[__USE_XOPEN] (MAXFLOAT): Define even if [__USE_MISC].
* math/math-svid-compat.h: New file.
* conform/linknamespace.pl (@whitelist): Remove matherr, matherrf
and matherrl.
* include/math.h [!_ISOMAC] (__matherr): Remove.
* manual/arith.texi (FP Exceptions): Do not document matherr.
* math/Makefile (tests): Change test-matherr to test-matherr-3.
(tests-internal): New variable.
(install-lib): Do not add libieee.a.
(non-lib.a): Likewise.
(extra-objs): Do not add libieee.a and ieee-math.o.
(CPPFLAGS-s_lib_version.c): Remove variable.
($(objpfx)libieee.a): Remove rule.
($(addprefix $(objpfx), $(tests-internal)): Depend on $(libm).
* math/ieee-math.c: Remove.
* math/libm-test-support.c (matherr): Remove.
* math/test-matherr.c: Use <support/test-driver.c>. Add copyright
and license notices. Include <math-svid-compat.h> and
<shlib-compat.h>.
(matherr): Undefine as macro. Use compat_symbol_reference.
(_LIB_VERSION): Likewise.
* math/test-matherr-2.c: New file.
* math/test-matherr-3.c: Likewise.
* sysdeps/generic/math_private.h (__kernel_standard): Remove
declaration.
(__kernel_standard_f): Likewise.
(__kernel_standard_l): Likewise.
* sysdeps/ieee754/s_lib_version.c: Do not include <math.h> or
<math_private.h>. Include <math-svid-compat.h>.
(_LIB_VERSION): Undefine as macro.
(_LIB_VERSION_INTERNAL): Always initialize to _POSIX_. Define
only if [LIBM_SVID_COMPAT || !defined SHARED]. If
[LIBM_SVID_COMPAT], use compat_symbol.
* sysdeps/ieee754/s_matherr.c: Do not include <math.h> or
<math_private.h>. Include <math-svid-compat.h>.
(matherr): Undefine as macro.
(__matherr): Define only if [LIBM_SVID_COMPAT]. Use
compat_symbol.
* sysdeps/ia64/fpu/libm_error.c: Include <math-svid-compat.h>.
[_LIBC && LIBM_SVID_COMPAT] (matherrf): Use
compat_symbol_reference.
[_LIBC && LIBM_SVID_COMPAT] (matherrl): Likewise.
[_LIBC && !LIBM_SVID_COMPAT] (matherrf): Define as macro.
[_LIBC && !LIBM_SVID_COMPAT] (matherrl): Likewise.
* sysdeps/ia64/fpu/libm_support.h: Include <math-svid-compat.h>.
(MATHERR_D): Remove declaration.
[!_LIBC] (_LIB_VERSION_TYPE): Likewise
[!LIBM_BUILD] (_LIB_VERSIONIMF): Likewise.
[LIBM_BUILD] (pmatherrf): Likewise.
[LIBM_BUILD] (pmatherr): Likewise.
[LIBM_BUILD] (pmatherrl): Likewise.
(DOMAIN): Likewise.
(SING): Likewise.
(OVERFLOW): Likewise.
(UNDERFLOW): Likewise.
(TLOSS): Likewise.
(PLOSS): Likewise.
* sysdeps/ia64/fpu/s_matherrf.c: Include <math-svid-compat.h>.
(__matherrf): Define only if [LIBM_SVID_COMPAT]. Use
compat_symbol.
* sysdeps/ia64/fpu/s_matherrl.c: Include <math-svid-compat.h>.
(__matherrl): Define only if [LIBM_SVID_COMPAT]. Use
compat_symbol.
* math/lgamma-compat.h: Include <math-svid-compat.h>.
* math/w_acos_compat.c: Likewise.
* math/w_acosf_compat.c: Likewise.
* math/w_acosh_compat.c: Likewise.
* math/w_acoshf_compat.c: Likewise.
* math/w_acoshl_compat.c: Likewise.
* math/w_acosl_compat.c: Likewise.
* math/w_asin_compat.c: Likewise.
* math/w_asinf_compat.c: Likewise.
* math/w_asinl_compat.c: Likewise.
* math/w_atan2_compat.c: Likewise.
* math/w_atan2f_compat.c: Likewise.
* math/w_atan2l_compat.c: Likewise.
* math/w_atanh_compat.c: Likewise.
* math/w_atanhf_compat.c: Likewise.
* math/w_atanhl_compat.c: Likewise.
* math/w_cosh_compat.c: Likewise.
* math/w_coshf_compat.c: Likewise.
* math/w_coshl_compat.c: Likewise.
* math/w_exp10_compat.c: Likewise.
* math/w_exp10f_compat.c: Likewise.
* math/w_exp10l_compat.c: Likewise.
* math/w_exp2_compat.c: Likewise.
* math/w_exp2f_compat.c: Likewise.
* math/w_exp2l_compat.c: Likewise.
* math/w_fmod_compat.c: Likewise.
* math/w_fmodf_compat.c: Likewise.
* math/w_fmodl_compat.c: Likewise.
* math/w_hypot_compat.c: Likewise.
* math/w_hypotf_compat.c: Likewise.
* math/w_hypotl_compat.c: Likewise.
* math/w_j0_compat.c: Likewise.
* math/w_j0f_compat.c: Likewise.
* math/w_j0l_compat.c: Likewise.
* math/w_j1_compat.c: Likewise.
* math/w_j1f_compat.c: Likewise.
* math/w_j1l_compat.c: Likewise.
* math/w_jn_compat.c: Likewise.
* math/w_jnf_compat.c: Likewise.
* math/w_jnl_compat.c: Likewise.
* math/w_lgamma_main.c: Likewise.
* math/w_lgamma_r_compat.c: Likewise.
* math/w_lgammaf_main.c: Likewise.
* math/w_lgammaf_r_compat.c: Likewise.
* math/w_lgammal_main.c: Likewise.
* math/w_lgammal_r_compat.c: Likewise.
* math/w_log10_compat.c: Likewise.
* math/w_log10f_compat.c: Likewise.
* math/w_log10l_compat.c: Likewise.
* math/w_log2_compat.c: Likewise.
* math/w_log2f_compat.c: Likewise.
* math/w_log2l_compat.c: Likewise.
* math/w_log_compat.c: Likewise.
* math/w_logf_compat.c: Likewise.
* math/w_logl_compat.c: Likewise.
* math/w_pow_compat.c: Likewise.
* math/w_powf_compat.c: Likewise.
* math/w_powl_compat.c: Likewise.
* math/w_remainder_compat.c: Likewise.
* math/w_remainderf_compat.c: Likewise.
* math/w_remainderl_compat.c: Likewise.
* math/w_scalb_compat.c: Likewise.
* math/w_scalbf_compat.c: Likewise.
* math/w_scalbl_compat.c: Likewise.
* math/w_sinh_compat.c: Likewise.
* math/w_sinhf_compat.c: Likewise.
* math/w_sinhl_compat.c: Likewise.
* math/w_sqrt_compat.c: Likewise.
* math/w_sqrtf_compat.c: Likewise.
* math/w_sqrtl_compat.c: Likewise.
* math/w_tgamma_compat.c: Likewise.
* math/w_tgammaf_compat.c: Likewise.
* math/w_tgammal_compat.c: Likewise.
* sysdeps/ieee754/dbl-64/w_exp_compat.c: Likewise.
* sysdeps/ieee754/flt-32/w_expf_compat.c: Likewise.
* sysdeps/ieee754/k_standard.c: Likewise.
* sysdeps/ieee754/k_standardf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/w_expl_compat.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/w_expl_compat.c: Likewise.
* sysdeps/ieee754/ldbl-96/w_expl_compat.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/w_sqrt_compat.S: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/w_sqrtf_compat.S: Likewise.
* sysdeps/powerpc/powerpc32/power5/fpu/w_sqrt_compat.S: Likewise.
* sysdeps/powerpc/powerpc32/power5/fpu/w_sqrtf_compat.S: Likewise.
* sysdeps/sparc/sparc32/fpu/w_sqrt_compat.S: Likewise.
* sysdeps/sparc/sparc32/fpu/w_sqrtf_compat.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/w_sqrt_compat-vis3.S:
Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/w_sqrtf_compat-vis3.S:
Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/w_sqrt_compat.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/w_sqrtf_compat.S: Likewise.
* sysdeps/sparc/sparc64/fpu/w_sqrt_compat.S: Likewise.
* sysdeps/sparc/sparc64/fpu/w_sqrtf_compat.S: Likewise.
Remove enum __ptrace_flags along with the only constant it contains,
PTRACE_SEIZE_DEVEL, from Linux's sys/ptrace.h files.
This temporary development constant shouldn't have been added to
sys/ptrace.h in the first place. It was introduced in Linux by commit
v3.1-rc1~308^2~28 as a temporary part of new experimental PTRACE_SEIZE
interface. Later, as PTRACE_SEIZE stabilized and lost its experimental
status, this flag was removed from Linux by commit v3.4-rc1~109^2~20.
* sysdeps/unix/sysv/linux/sys/ptrace.h (enum __ptrace_flags,
PTRACE_SEIZE_DEVEL): Remove.
* sysdeps/unix/sysv/linux/aarch64/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/s390/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/ptrace.h: Likewise.
This commit enhances the stub resolver to reload the configuration
in the per-thread _res object if the /etc/resolv.conf file has
changed. The resolver checks whether the application has modified
_res and will not overwrite the _res object in that case.
The struct resolv_context mechanism is used to check the
configuration file only once per name lookup.
This change uses the extended resolver state in struct resolv_conf to
store the search list. If applications have not patched the _res
object directly, this extended search list will be used by the stub
resolver during name resolution.
This patch adds tgmath.h support for _Float128, so eliminating the
awkward caveat in NEWS about the type not being supported there. This
does inevitably increase the size of macro expansions (which grows
particularly fast when you have nested calls to tgmath.h macros), but
only when _Float128 is supported and the declarations of _Float128
interfaces are visible; otherwise the expansions are unchanged.
Tested for x86_64 and arm.
* math/tgmath.h: Include <bits/libc-header-start.h> and
<bits/floatn.h>.
(__TGMATH_F128): New macro.
(__TGMATH_CF128): Likewise.
(__TGMATH_UNARY_REAL_ONLY): Use __TGMATH_F128.
(__TGMATH_UNARY_REAL_RET_ONLY): Likewise.
(__TGMATH_BINARY_FIRST_REAL_ONLY): Likewise.
(__TGMATH_BINARY_FIRST_REAL_STD_ONLY): New macro.
(__TGMATH_BINARY_REAL_ONLY): Use __TGMATH_F128.
(__TGMATH_BINARY_REAL_STD_ONLY): New macro.
(__TGMATH_BINARY_REAL_RET_ONLY): Use __TGMATH_F128.
(__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY): Likewise.
(__TGMATH_TERNARY_REAL_ONLY): Likewise.
(__TGMATH_TERNARY_FIRST_REAL_RET_ONLY): Likewise.
(__TGMATH_UNARY_REAL_IMAG): Use __TGMATH_CF128.
(__TGMATH_UNARY_IMAG): Use __TGMATH_F128.
(__TGMATH_UNARY_REAL_IMAG_RET_REAL): Use __TGMATH_CF128.
(__TGMATH_BINARY_REAL_IMAG): Likewise.
(nexttoward): Use __TGMATH_BINARY_FIRST_REAL_STD_ONLY.
[__USE_MISC] (scalb): Use __TGMATH_BINARY_REAL_STD_ONLY.
* math/gen-tgmath-tests.py (Type.init_types): Enable _FloatN and
_FloatNx types if the corresponding HUGE_VAL macros are defined.
This patch implements a requirement of binutils >= 2.25 (up from 2.22)
to build glibc. Tests for 2.24 or later on x86_64 and s390 are
removed. It was already the case, as indicated by buildbot results,
that 2.24 was too old for building tests for 32-bit x86 (produced
internal linker errors linking elf/tst-gnu2-tls1mod.so). I don't know
if any configure tests for binutils features are obsolete given the
increased version requirement.
Tested for x86_64.
* configure.ac (AS): Require binutils 2.25 or later.
(LD): Likewise.
* configure: Regenerated.
* sysdeps/s390/configure.ac (AS): Remove version check.
* sysdeps/s390/configure: Regenerated.
* sysdeps/x86_64/configure.ac (AS): Remove version check.
* sysdeps/x86_64/configure: Regenerated.
* manual/install.texi (Tools for Compilation): Document
requirement for binutils 2.25 or later.
* INSTALL: Regenerated.
This patch fixes various miscellaneous namespace issues in
sys/ucontext.h headers.
Some struct tags are removed where the structs also have *_t typedef
names, while other struct tags without such names are renamed to start
__; the changes are noted in NEWS as they can affect C++ name mangling
(although there seems to be little if any external use of these types,
at least based on checking codesearch.debian.net). For powerpc,
pointers to struct pt_regs (not defined in this header) are changed to
point to struct __ctx(pt_regs), so in the __USE_MISC case those struct
fields continue to point to the existing struct pt_regs type for
maximum compatibility, while when that's a namespace issue they point
to a struct __pt_regs type which is always an incomplete struct.
Tested for affected architectures with build-many-glibcs.py.
[BZ #21457]
* sysdeps/unix/sysv/linux/m68k/sys/ucontext.h (fpregset_t): Remove
struct tag.
* sysdeps/unix/sysv/linux/mips/sys/ucontext.h (fpregset_t):
Likewise.
* sysdeps/unix/sysv/linux/nios2/sys/ucontext.h (mcontext_t):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/ucontext.h (pt_regs):
Declare struct type with __ctx.
[__WORDSIZE != 32] (mcontext_t): Use __ctx with pt_regs struct
tag.
(ucontext_t) [__WORDSIZE == 32]: Use __ctx with pt_regs struct tag
and regs field name.
This patch enables float128 support for ia64, so that all the
configurations where GCC supports _Float128 / __float128 as an
ABI-distinct type now have glibc support as well. bits/floatn.h
declares the support to be available for GCC 4.4 and later, which is
when the libgcc support was added. The removal of
sysdeps/ia64/fpu/k_rem_pio2.c is because the generic k_rem_pio2.c
defines a function required by the float128 code.
Tested (compilation only) with build-many-glibcs.py for ia64 (GCC 6
and GCC 7).
Given how long it is since libm-test-ulps has been updated for ia64, I
think truncating the file and regenerating it from scratch would be a
good idea when doing a regeneration to add float128 ulps. I expect
various ia64 libm issues (at least some already filed in Bugzilla) to
result in test failures even after ulps regeneration, but hopefully
the float128 code will pass tests as it's the same as used on other
architectures.
* sysdeps/ia64/Implies: Add ieee754/float128.
* sysdeps/ia64/bits/floatn.h: New file.
* sysdeps/ia64/float128-abi.h: Likewise.
* manual/math.texi (Mathematics): Document support for _Float128
on ia64.
* sysdeps/ia64/Makefile [$(subdir) = math] (CPPFLAGS): Append to
Makefile variable.
* sysdeps/ia64/fpu/e_sqrtf128.c: New file.
* sysdeps/ia64/fpu/k_rem_pio2.c: Remove file.
* sysdeps/ia64/fpu/sfp-machine.h: New file. Based on libgcc.
* sysdeps/ia64/math-tests.h: New file.
* math/libm-test-support.h (XFAIL_FLOAT128_PAYLOAD): Also define
based on TEST_COND_binary128 for [__ia64__].
* sysdeps/unix/sysv/linux/ia64/libc.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise,
The ucontext_t type has a tag struct ucontext. As with previous such
issues for siginfo_t and stack_t, this tag is not permitted by POSIX
(is not in a reserved namespace), and so namespace conformance means
breaking C++ name mangling for this type.
In this case, the type does need to have some tag rather than just a
typedef name, because it includes a pointer to itself. This patch
uses struct ucontext_t as the new tag, so the type is mangled as
ucontext_t (the POSIX *_t reservation applies in all namespaces, not
just the namespace of ordinary identifiers). Another reserved name
such as struct __ucontext could of course be used.
Because of other namespace issues, this patch does not by itself fix
bug 21457 or allow any XFAILs to be removed.
Tested for x86_64, and with build-many-glibcs.py.
[BZ #21457]
* sysdeps/arm/sys/ucontext.h (struct ucontext): Rename to struct
ucontext_t.
* sysdeps/generic/sys/ucontext.h (struct ucontext): Likewise.
* sysdeps/i386/sys/ucontext.h (struct ucontext): Likewise.
* sysdeps/m68k/sys/ucontext.h (struct ucontext): Likewise.
* sysdeps/mips/sys/ucontext.h (struct ucontext): Likewise.
* sysdeps/unix/sysv/linux/aarch64/sys/ucontext.h (struct
ucontext): Likewise.
* sysdeps/unix/sysv/linux/alpha/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/arm/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/hppa/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/m68k/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/mips/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/nios2/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/ucontext.h (struct
ucontext): Likewise.
* sysdeps/unix/sysv/linux/s390/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/sh/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/tile/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/unix/sysv/linux/x86/sys/ucontext.h (struct ucontext):
Likewise.
* sysdeps/powerpc/powerpc32/backtrace.c (struct
rt_signal_frame_32): Likewise.
* sysdeps/powerpc/powerpc64/backtrace.c (struct signal_frame_64):
Likewise.
* sysdeps/unix/sysv/linux/aarch64/kernel_rt_sigframe.h (struct
kernel_rt_sigframe): Likewise.
* sysdeps/unix/sysv/linux/aarch64/sigcontextinfo.h (SIGCONTEXT):
Likewise.
* sysdeps/unix/sysv/linux/arm/register-dump.h (register_dump):
Likewise.
* sysdeps/unix/sysv/linux/arm/sigcontextinfo.h (SIGCONTEXT):
Likewise.
* sysdeps/unix/sysv/linux/hppa/profil-counter.h
(__profil_counter): Likewise.
* sysdeps/unix/sysv/linux/microblaze/sigcontextinfo.h
(SIGCONTEXT): Likewise.
* sysdeps/unix/sysv/linux/mips/kernel_rt_sigframe.h (struct
kernel_rt_sigframe): Likewise.
* sysdeps/unix/sysv/linux/nios2/kernel_rt_sigframe.h (struct
kernel_rt_sigframe): Likewise.
* sysdeps/unix/sysv/linux/nios2/sigcontextinfo.h (SIGCONTEXT):
Likewise.
* sysdeps/unix/sysv/linux/sh/makecontext.S (__makecontext):
Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/makecontext.c
(__start_context): Likewise.
* sysdeps/unix/sysv/linux/tile/sigcontextinfo.h (SIGCONTEXT):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/register-dump.h (register_dump):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigcontextinfo.h (SIGCONTEXT):
Likewise.
This patch enables float128 support for x86_64 and x86. All GCC
versions that can build glibc provide the required support, but since
GCC 6 and before don't provide __builtin_nanq / __builtin_nansq, sNaN
tests and some tests of NaN payloads need to be disabled with such
compilers (this does not affect the generated glibc binaries at all,
just the tests). bits/floatn.h declares float128 support to be
available for GCC versions that provide the required libgcc support
(4.3 for x86_64, 4.4 for i386 GNU/Linux, 4.5 for i386 GNU/Hurd);
compilation-only support was present some time before then, but not
really useful without the libgcc functions.
fenv_private.h needed updating to avoid trying to put _Float128 values
in registers. I make no assertion of optimality of the
math_opt_barrier / math_force_eval definitions for this case; they are
simply intended to be sufficient to work correctly.
Tested for x86_64 and x86, with GCC 7 and GCC 6. (Testing for x32 was
compilation tests only with build-many-glibcs.py to verify the ABI
baseline updates. I have not done any testing for Hurd, although the
float128 support is enabled there as for GNU/Linux.)
* sysdeps/i386/Implies: Add ieee754/float128.
* sysdeps/x86_64/Implies: Likewise.
* sysdeps/x86/bits/floatn.h: New file.
* sysdeps/x86/float128-abi.h: Likewise.
* manual/math.texi (Mathematics): Document support for _Float128
on x86_64 and x86.
* sysdeps/i386/fpu/fenv_private.h: Include <bits/floatn.h>.
(math_opt_barrier): Do not put _Float128 values in floating-point
registers.
(math_force_eval): Likewise.
[__x86_64__] (SET_RESTORE_ROUNDF128): New macro.
* sysdeps/x86/fpu/Makefile [$(subdir) = math] (CPPFLAGS): Append
to Makefile variable.
* sysdeps/x86/fpu/e_sqrtf128.c: New file.
* sysdeps/x86/fpu/sfp-machine.h: Likewise. Based on libgcc.
* sysdeps/x86/math-tests.h: New file.
* math/libm-test-support.h (XFAIL_FLOAT128_PAYLOAD): New macro.
* math/libm-test-getpayload.inc (getpayload_test_data): Use
XFAIL_FLOAT128_PAYLOAD.
* math/libm-test-setpayload.inc (setpayload_test_data): Likewise.
* math/libm-test-totalorder.inc (totalorder_test_data): Likewise.
* math/libm-test-totalordermag.inc (totalordermag_test_data):
Likewise.
* sysdeps/unix/sysv/linux/i386/libc.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Likewise.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds ULPs for the float128 type, updates the abilist for libc
and libm, and adds the files bits/floatn.h and float128-abi.h, in order to
enable the new type for powerpc64le.
This patch also adds the implementation of sqrtf128 for powerpc64le, since
it is not implemented in libgcc. The sfp-machine.h header is taken from
libgcc.
Tested for powerpc64le (GCC 6.2 and GCC 7.1), powerpc64 and s390x.
* manual/math.texi (Mathematics): Mention the enabling of float128
for powerpc64le.
* sysdeps/powerpc/bits/floatn.h: New file.
* sysdeps/powerpc/fpu/libm-test-ulps: Regenerated.
* sysdeps/powerpc/fpu/math_private.h:
(__ieee754_sqrtf128): New inline override.
* sysdeps/powerpc/powerpc64le/Implies-before: New file.
* sysdeps/powerpc/powerpc64le/Makefile: New file.
* sysdeps/powerpc/powerpc64le/fpu/e_sqrtf128.c: New file.
* sysdeps/powerpc/powerpc64le/fpu/sfp-machine.h: New file.
* sysdeps/powerpc/powerpc64le/power9/fpu/e_sqrtf128.c: New file.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist:
Updated.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64le/float128-abi.h:
New file.
* Unicode 10.0.0 Support: Character encoding, character type info, and
transliteration tables are all updated to Unicode 10.0.0, using
generator scripts contributed by Mike FABIAN (Red Hat).
Many of the things defined by bits/signum.h are invariant across all
supported operating systems. This patch factors out all of them to a
new header bits/signum-generic.h, which each bits/signum.h will include
and then override whichever things need adjustment. Normally that will
mean, at most, adding or changing a few signal numbers.
A user-visible side effect is that the obsolete signal constant SIGUNUSED
(which is an alias for SIGSYS on all platforms that define it) is no
longer exposed by any version of bits/signum.h.
A side effect only relevant to glibc hackers is that _NSIG is now defined
in terms of __SIGRTMAX, instead of the other way around. This is because
__SIGRTMAX varies from platform to platform, but _NSIG==__SIGRTMAX+1 is
true universally. If your platform doesn't support realtime signals,
leave __SIGRTMAX equal to __SIGRTMIN.
I also added a Linux-specific test to make sure that our signal constants
match the ones in <asm/signal.h>, since we can't use that header (it's
not even vaguely namespace-clean).
* bits/signum-generic.h: Renamed from bits/signum.h.
Add proper multiple include guard and misuse check.
Define __SIGRTMIN = __SIGRTMAX = 32, and define _NSIG = __SIGRTMAX+1.
Move definition of SIGIO to "archaic names for compatibility" section.
* bits/signum.h: New file which just includes bits/signum-generic.h.
* sysdeps/unix/bsd/bits/signum.h
* sysdeps/unix/sysv/linux/bits/signum.h
* sysdeps/unix/sysv/linux/alpha/bits/signum.h
* sysdeps/unix/sysv/linux/hppa/bits/signum.h
* sysdeps/unix/sysv/linux/mips/bits/signum.h
* sysdeps/unix/sysv/linux/sparc/bits/signum.h
Just include <bits/signum-generic.h> and then add or adjust
signal constants. Do not define SIGUNUSED, SIGRTMIN, or SIGRTMAX.
* signal/Makefile: Install bits/signum-generic.h.
* signal/signal.h: Define SIGRTMIN and SIGRTMAX here.
* sysdeps/generic/siglist.h: SIGSYS and SIGWINCH are
universal. Prefer SIGPOLL to SIGIO. Simplify #ifdeffage.
* sysdeps/unix/sysv/linux/tst-signal-numbers.sh: New test.
* sysdeps/unix/sysv/linux/Makefile: Run it.
xlocale.h is already a single-type micro-header, defining struct
__locale_struct and the typedefs __locale_t and locale_t. This patch
brings it into the bits/types/ scheme: there are now
bits/types/__locale_t.h which defines only __locale_struct and
__locale_t, and bits/types/locale_t.h which defines locale_t as well
as the other two. None of *our* headers need __locale_t.h, but it
appears to me that libstdc++ could make use of it.
There are a lot of external uses of xlocale.h, but all the uses I
checked had an autoconf test or equivalent for its existence. It has
never been available from other C libraries, and it has always
contained a comment reading "This file is not standardized, don't rely
on it, it can go away without warning" so I think dropping it is
pretty safe.
I also took the opportunity to clean up comments in various public
header files that still talk about the *_l interfaces as though they
were completely nonstandard. There are a few of them, notably the
strtoX_l and wcstoX_l families, that haven't been standardized, but
the bulk are in POSIX.1-2008.
* locale/xlocale.h: Rename to...
* locale/bits/types/__locale_t.h: ...here. Adjust commentary.
Only define struct __locale_struct and __locale_t, not locale_t.
* locale/bits/types/locale_t.h: New file; define locale_t here.
* locale/Makefile (headers): Update to match.
* include/xlocale.h: Delete wrapper.
* include/bits/types/__locale_t.h: New wrapper.
* include/bits/types/locale_t.h: New wrapper.
* ctype/ctype.h, include/printf.h, include/time.h
* locale/langinfo.h, locale/locale.h, stdlib/monetary.h
* stdlib/stdlib.h, string/string.h, string/strings.h, time/time.h
* wcsmbs/wchar.h, wctype/wctype.h: Use bits/types/locale_t.h.
Correct outdated comments regarding the standardization status of
the functions that take locale_t arguments.
* stdlib/strtod_l.c, stdlib/strtof_l.c, stdlib/strtol_l.c
* stdlib/strtold_l.c, stdlib/strtoul_l.c, stdlib/strtoull_l.c
* sysdeps/ieee754/ldbl-128ibm/strtold_l.c
* sysdeps/ieee754/ldbl-64-128/strtold_l.c
* wcsmbs/wcstod.c, wcsmbs/wcstod_l.c, wcsmbs/wcstof.c
* wcsmbs/wcstof_l.c, wcsmbs/wcstold.c, wcsmbs/wcstold_l.c:
Don't include xlocale.h. If necessary, include locale.h instead.
* stdlib/strtold_l.c: Unconditionally include wchar.h.
This patch makes configure require GCC 4.9 or later for building
glibc, and documents that requirement. Requiring GCC 4.9 or later
allows use of _Generic (as in tzcode). It would allow <stdatomic.h>
and _Atomic to be used as well if desired, although we need to avoid
any libatomic dependencies on any platforms. This patch is explicitly
the minimum to implement a new version requirement, with any
consequent cleanups of conditional code (not in installed headers or
files shared with gnulib etc.) to be done separately.
Tested for x86_64.
* configure.ac (libc_cv_compiler_ok): Require GCC 4.9 or later.
* configure: Regenerated.
* manual/install.texi (Tools for Compilation): Document
requirement for GCC 4.9 or later.
* INSTALL: Regenerated.
This patch removes PTRACE_GETREGS, PTRACE_SETREGS, PTRACE_GETFPREGS
and PTRACE_SETFPREGS as these requests does not exist on s390 kernel.
But the kernel has support for PTRACE_SINGLEBLOCK,
PTRACE_SECCOMP_GET_FILTER, PTRACE_PEEKUSR_AREA, PTRACE_POKEUSR_AREA,
PTRACE_GET_LAST_BREAK, PTRACE_ENABLE_TE, PTRACE_DISABLE_TE and
PTRACE_TE_ABORT_RAND. Thus those are defined now.
The current kernel s390 specific ptrace.h file also defines
PTRACE_PEEKTEXT_AREA, PTRACE_PEEKDATA_AREA, PTRACE_POKETEXT_AREA,
PTRACE_POKEDATA_AREA, PTRACE_PEEK_SYSTEM_CALL, PTRACE_POKE_SYSTEM_CALL
and PTRACE_PROT, but those requests are not supported.
Thus those defines are skipped in glibc ptrace.h.
There were old includes of ptrace.h in sysdeps/s390/fpu/fesetenv.c.
The ptrace feature isn't used there anymore, thus I removed the includes.
Before this patch, <glibc>/sysdeps/unix/sysv/linux/s390/sys/ptrace.h
uses ptrace-request 12 for PTRACE_GETREGS,
but <kernel>/include/uapi/linux/ptrace.h uses 12 for PTRACE_SINGLEBLOCK.
The s390 kernel has never had support for PTRACE_GETREGS!
Thus glibc ptrace.h is adjusted to match kernel ptrace.h.
The new s390 specific test ensures, that PTRACE_SINGLEBLOCK defined
in glibc works as expected. If the kernel would interpret it as
PTRACE_GETREGS, then the testcase will not make any progress
and will time out.
ChangeLog:
[BZ #21539]
* NEWS: Mention s390 ptrace request changes.
* sysdeps/unix/sysv/linux/s390/sys/ptrace.h
(PTRACE_GETREGS, PTRACE_SETREGS, PTRACE_GETFPREGS,
PTRACE_SETFPREGS): Remove enum constant.
(PT_GETREGS, PT_SETREGS, PT_GETFPREGS, T_SETFPREGS):
Remove defines.
(PTRACE_SINGLEBLOCK): New enum constant.
(PT_STEPBLOCK): New define.
(PTRACE_PEEKUSR_AREA, PTRACE_POKEUSR_AREA,
PTRACE_GET_LAST_BREAK, PTRACE_ENABLE_TE, PTRACE_DISABLE_TE,
PTRACE_TE_ABORT_RAND): New enum constant and define.
* sysdeps/s390/fpu/fesetenv.c: Remove ptrace.h includes.
* sysdeps/unix/sysv/linux/s390/tst-ptrace-singleblock.c:
New file.
* sysdeps/unix/sysv/linux/s390/Makefile: Add test.
All of the major architectures are adopting tunables as a way to add
tuning to the library, from hwcap_mask for aarch64 to HLE for s390 and
ifunc and cache geometry for x86. Given this adoption and the fact
that we don't want additional tuning knobs to be added outside of
tunables, it makes sense to enable tunables by default using this
trivial patch.
Smoke tested on x86 to ensure that tunables code was built without
specifying it as a configure flag. I have kept it as --enabled and
not changed it to --disable since we want to still keep the option of
different kinds of front-ends for tunables.
* configure.ac(--enable-tunables): Enable by default.
* configure: Regenerate.
* NEWS: Mention change.
* manual/install.texi (enable-tunables): Adjust documentation.
* INSTALL: Regenerate.
This is fairly complicated, not because the users of __need_Emath and
__need_error_t have complicated requirements, but because the core
changes had a lot of fallout.
__need_error_t exists for gnulib compatibility in argz.h and argp.h.
error_t itself is a Hurdism, an enum containing all the E-constants,
so you can do 'p (error_t) errno' in gdb and get a symbolic value.
argz.h and argp.h use it for function return values, and they want to
fall back to 'int' when that's not available. There is no reason why
these nonstandard headers cannot just go ahead and include all of
errno.h; so we do that.
__need_Emath is defined only by .S files; what they _really_ need is
for errno.h to avoid declaring anything other than the E-constants
(e.g. 'extern int __errno_location(void);' is a syntax error in
assembly language). This is replaced with a check for __ASSEMBLER__ in
errno.h, plus a carefully documented requirement for bits/errno.h not
to define anything other than macros. That in turn has the
consequence that bits/errno.h must not define errno - fortunately, all
live ports use the same definition of errno, so I've moved it to
errno.h. The Hurd bits/errno.h must also take care not to define
error_t when __ASSEMBLER__ is defined, which involves repeating all of
the definitions twice, but it's a generated file so that's okay.
* stdlib/errno.h: Remove __need_Emath and __need_error_t logic.
Reorganize file. Declare errno here. When __ASSEMBLER__ is
defined, don't declare anything other than the E-constants.
* include/errno.h: Change conditional for exposing internal
declarations to (not _ISOMAC and not __ASSEMBLER__).
* bits/errno.h: Remove logic for __need_Emath. Document
requirements for a port-specific bits/errno.h.
* sysdeps/unix/sysv/linux/bits/errno.h
* sysdeps/unix/sysv/linux/alpha/bits/errno.h
* sysdeps/unix/sysv/linux/hppa/bits/errno.h
* sysdeps/unix/sysv/linux/mips/bits/errno.h
* sysdeps/unix/sysv/linux/sparc/bits/errno.h:
Add multiple-include guard and check against improper inclusion.
Remove __need_Emath logic. Don't declare errno here. Ensure all
constants are defined as simple integer literals. Consistent
formatting.
* sysdeps/mach/hurd/errnos.awk: Likewise. Only define error_t and
enum __error_t_codes if __ASSEMBLER__ is not defined.
* sysdeps/mach/hurd/bits/errno.h: Regenerate.
* argp/argp.h, string/argz.h: Don't define __need_error_t before
including errno.h.
* sysdeps/i386/i686/fpu/multiarch/s_cosf-sse2.S
* sysdeps/i386/i686/fpu/multiarch/s_sincosf-sse2.S
* sysdeps/i386/i686/fpu/multiarch/s_sinf-sse2.S
* sysdeps/x86_64/fpu/s_cosf.S
* sysdeps/x86_64/fpu/s_sincosf.S
* sysdeps/x86_64/fpu/s_sinf.S:
Just include errno.h; don't define __need_Emath or include
bits/errno.h directly.
This patch optimizes the generic spinlock code.
The type pthread_spinlock_t is a typedef to volatile int on all archs.
Passing a volatile pointer to the atomic macros which are not mapped to the
C11 atomic builtins can lead to extra stores and loads to stack if such
a macro creates a temporary variable by using "__typeof (*(mem)) tmp;".
Thus, those macros which are used by spinlock code - atomic_exchange_acquire,
atomic_load_relaxed, atomic_compare_exchange_weak - have to be adjusted.
According to the comment from Szabolcs Nagy, the type of a cast expression is
unqualified (see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_423.htm):
__typeof ((__typeof (*(mem)) *(mem)) tmp;
Thus from spinlock perspective the variable tmp is of type int instead of
type volatile int. This patch adjusts those macros in include/atomic.h.
With this construct GCC >= 5 omits the extra stores and loads.
The atomic macros are replaced by the C11 like atomic macros and thus
the code is aligned to it. The pthread_spin_unlock implementation is now
using release memory order instead of sequentially consistent memory order.
The issue with passed volatile int pointers applies to the C11 like atomic
macros as well as the ones used before.
I've added a glibc_likely hint to the first atomic exchange in
pthread_spin_lock in order to return immediately to the caller if the lock is
free. Without the hint, there is an additional jump if the lock is free.
I've added the atomic_spin_nop macro within the loop of plain reads.
The plain reads are also realized by C11 like atomic_load_relaxed macro.
The new define ATOMIC_EXCHANGE_USES_CAS determines if the first try to acquire
the spinlock in pthread_spin_lock or pthread_spin_trylock is an exchange
or a CAS. This is defined in atomic-machine.h for all architectures.
The define SPIN_LOCK_READS_BETWEEN_CMPXCHG is now removed.
There is no technical reason for throwing in a CAS every now and then,
and so far we have no evidence that it can improve performance.
If that would be the case, we have to adjust other spin-waiting loops
elsewhere, too! Using a CAS loop without plain reads is not a good idea
on many targets and wasn't used by one. Thus there is now no option to
do so.
Architectures are now using the generic spinlock automatically if they
do not provide an own implementation. Thus the pthread_spin_lock.c files
in sysdeps folder are deleted.
ChangeLog:
* NEWS: Mention new spinlock implementation.
* include/atomic.h:
(__atomic_val_bysize): Cast type to omit volatile qualifier.
(atomic_exchange_acq): Likewise.
(atomic_load_relaxed): Likewise.
(ATOMIC_EXCHANGE_USES_CAS): Check definition.
* nptl/pthread_spin_init.c (pthread_spin_init):
Use atomic_store_relaxed.
* nptl/pthread_spin_lock.c (pthread_spin_lock):
Use C11-like atomic macros.
* nptl/pthread_spin_trylock.c (pthread_spin_trylock):
Likewise.
* nptl/pthread_spin_unlock.c (pthread_spin_unlock):
Use atomic_store_release.
* sysdeps/aarch64/nptl/pthread_spin_lock.c: Delete File.
* sysdeps/arm/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/hppa/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/m68k/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/microblaze/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/mips/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/nios2/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/aarch64/atomic-machine.h (ATOMIC_EXCHANGE_USES_CAS): Define.
* sysdeps/alpha/atomic-machine.h: Likewise.
* sysdeps/arm/atomic-machine.h: Likewise.
* sysdeps/i386/atomic-machine.h: Likewise.
* sysdeps/ia64/atomic-machine.h: Likewise.
* sysdeps/m68k/coldfire/atomic-machine.h: Likewise.
* sysdeps/m68k/m680x0/m68020/atomic-machine.h: Likewise.
* sysdeps/microblaze/atomic-machine.h: Likewise.
* sysdeps/mips/atomic-machine.h: Likewise.
* sysdeps/powerpc/powerpc32/atomic-machine.h: Likewise.
* sysdeps/powerpc/powerpc64/atomic-machine.h: Likewise.
* sysdeps/s390/atomic-machine.h: Likewise.
* sysdeps/sparc/sparc32/atomic-machine.h: Likewise.
* sysdeps/sparc/sparc32/sparcv9/atomic-machine.h: Likewise.
* sysdeps/sparc/sparc64/atomic-machine.h: Likewise.
* sysdeps/tile/tilegx/atomic-machine.h: Likewise.
* sysdeps/tile/tilepro/atomic-machine.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/atomic-machine.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/atomic-machine.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/atomic-machine.h: Likewise.
* sysdeps/unix/sysv/linux/sh/atomic-machine.h: Likewise.
* sysdeps/x86_64/atomic-machine.h: Likewise.
glibc defines the stack_t type with the tag struct sigaltstack. This
is not permitted by POSIX; sigaltstack is only reserved with file
scope in the namespace of ordinary identifiers, not the tag namespace,
and in the case where stack_t is obtained from ucontext.h rather than
signal.h, it's not reserved with file scope at all.
This patch removes the tag accordingly and updates uses in glibc of
struct sigaltstack. This is similar to the removal of the "struct
siginfo" tag a few years ago: C++ name mangling changes are an
unavoidable consequence. A NEWS item is added to note the changed
mangling. There is inevitably some risk of breaking builds of
anything that relies on the struct sigaltstack name (though the first
few hits I looked at from codesearch.debian.net generally seemed to
involve code that could use the stack_t name conditionally, so
depending on how they determine the conditionals they may work with
glibc not defining the struct tag anyway).
Tested for x86_64 and x86, and with build-many-glibcs.py.
[BZ #21517]
* bits/types/stack_t.h (stack_t): Remove struct tag.
* sysdeps/unix/sysv/linux/bits/types/stack_t.h (stack_t):
Likewise.
* sysdeps/unix/sysv/linux/mips/bits/types/stack_t.h (stack_t):
Likewise.
* debug/segfault.c (install_handler): Use stack_t instead of
struct sigaltstack.
* hurd/hurd/signal.h (struct hurd_sigstate): Likewise.
* hurd/trampoline.c (_hurd_setup_sighandler): Likewise.
* include/signal.h (__sigaltstack): Likwise.
* signal/sigaltstack.c (__sigaltstack): Likewise.
* signal/signal.h (sigaltstack): Likewise.
* sysdeps/mach/hurd/i386/signal-defines.sym
(SIGALTSTACK__SS_SP__OFFSET): Likewise.
(SIGALTSTACK__SS_SIZE__OFFSET): Likewise.
(SIGALTSTACK__SS_FLAGS__OFFSET): Likewise.
* sysdeps/mach/hurd/sigaltstack.c (__sigaltstack): Likewise.
* sysdeps/mach/hurd/sigstack.c (sigstack): Likewise.
* sysdeps/unix/sysv/linux/alpha/sys/procfs.h (struct
elf_prstatus): Likewise.
* sysdeps/unix/sysv/linux/hppa/____longjmp_chk.c (CHECK_SP):
Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/procfs.h (struct elf_prstatus):
Likewise.
* sysdeps/unix/sysv/linux/m68k/____longjmp_chk.c (CHECK_SP):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/procfs.h (struct
elf_prstatus): Likewise.
* sysdeps/unix/sysv/linux/sh/sys/procfs.h (struct elf_prstatus):
Likewise.
* sysdeps/unix/sysv/linux/sys/procfs.h (struct elf_prstatus):
Likewise.