Commit Graph

6 Commits

Author SHA1 Message Date
Florian Weimer
849274d48f elf: Fix force_first handling in dlclose (bug 30981)
The force_first parameter was ineffective because the dlclose'd
object was not necessarily the first in the maps array.  Also
enable force_first handling unconditionally, regardless of namespace.
The initial object in a namespace should be destructed first, too.

The _dl_sort_maps_dfs function had early returns for relocation
dependency processing which broke force_first handling, too, and
this is fixed in this change as well.

Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2023-11-16 20:16:05 +01:00
Florian Weimer
dd32e1db38 Revert "elf: Always call destructors in reverse constructor order (bug 30785)"
This reverts commit 6985865bc3.

Reason for revert:

The commit changes the order of ELF destructor calls too much relative
to what applications expect or can handle.  In particular, during
process exit and _dl_fini, after the revert commit, we no longer call
the destructors of the main program first; that only happens after
some dlopen'ed objects have been destructed.  This robs applications
of an opportunity to influence destructor order by calling dlclose
explicitly from the main program's ELF destructors.  A couple of
different approaches involving reverse constructor order were tried,
and none of them worked really well.  It seems we need to keep the
dependency sorting in _dl_fini.

There is also an ambiguity regarding nested dlopen calls from ELF
constructors: Should those destructors run before or after the object
that called dlopen?  Commit 6985865bc3 used reverse order
of the start of ELF constructor calls for destructors, but arguably
using completion of constructors is more correct.  However, that alone
is not sufficient to address application compatibility issues (it
does not change _dl_fini ordering at all).
2023-10-18 11:30:38 +02:00
Florian Weimer
6985865bc3 elf: Always call destructors in reverse constructor order (bug 30785)
The current implementation of dlclose (and process exit) re-sorts the
link maps before calling ELF destructors.  Destructor order is not the
reverse of the constructor order as a result: The second sort takes
relocation dependencies into account, and other differences can result
from ambiguous inputs, such as cycles.  (The force_first handling in
_dl_sort_maps is not effective for dlclose.)  After the changes in
this commit, there is still a required difference due to
dlopen/dlclose ordering by the application, but the previous
discrepancies went beyond that.

A new global (namespace-spanning) list of link maps,
_dl_init_called_list, is updated right before ELF constructors are
called from _dl_init.

In dl_close_worker, the maps variable, an on-stack variable length
array, is eliminated.  (VLAs are problematic, and dlclose should not
call malloc because it cannot readily deal with malloc failure.)
Marking still-used objects uses the namespace list directly, with
next and next_idx replacing the done_index variable.

After marking, _dl_init_called_list is used to call the destructors
of now-unused maps in reverse destructor order.  These destructors
can call dlopen.  Previously, new objects do not have l_map_used set.
This had to change: There is no copy of the link map list anymore,
so processing would cover newly opened (and unmarked) mappings,
unloading them.  Now, _dl_init (indirectly) sets l_map_used, too.
(dlclose is handled by the existing reentrancy guard.)

After _dl_init_called_list traversal, two more loops follow.  The
processing order changes to the original link map order in the
namespace.  Previously, dependency order was used.  The difference
should not matter because relocation dependencies could already
reorder link maps in the old code.

The changes to _dl_fini remove the sorting step and replace it with
a traversal of _dl_init_called_list.  The l_direct_opencount
decrement outside the loader lock is removed because it appears
incorrect: the counter manipulation could race with other dynamic
loader operations.

tst-audit23 needs adjustments to the changes in LA_ACT_DELETE
notifications.  The new approach for checking la_activity should
make it clearer that la_activty calls come in pairs around namespace
updates.

The dependency sorting test cases need updates because the destructor
order is always the opposite order of constructor order, even with
relocation dependencies or cycles present.

There is a future cleanup opportunity to remove the now-constant
force_first and for_fini arguments from the _dl_sort_maps function.

Fixes commit 1df71d32fe ("elf: Implement
force_first handling in _dl_sort_maps_dfs (bug 28937)").

Reviewed-by: DJ Delorie <dj@redhat.com>
2023-09-08 12:34:27 +02:00
Florian Weimer
1df71d32fe elf: Implement force_first handling in _dl_sort_maps_dfs (bug 28937)
The implementation in _dl_close_worker requires that the first
element of l_initfini is always this very map (“We are always the
zeroth entry, and since we don't include ourselves in the
dependency analysis start at 1.”).  Rather than fixing that
assumption, this commit adds an implementation of the force_first
argument to the new dependency sorting algorithm.  This also means
that the directly dlopen'ed shared object is always initialized last,
which is the least surprising behavior in the presence of cycles.

Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2022-09-20 11:00:42 +02:00
Chung-Lin Tang
15a0c5730d elf: Fix slow DSO sorting behavior in dynamic loader (BZ #17645)
This second patch contains the actual implementation of a new sorting algorithm
for shared objects in the dynamic loader, which solves the slow behavior that
the current "old" algorithm falls into when the DSO set contains circular
dependencies.

The new algorithm implemented here is simply depth-first search (DFS) to obtain
the Reverse-Post Order (RPO) sequence, a topological sort. A new l_visited:1
bitfield is added to struct link_map to more elegantly facilitate such a search.

The DFS algorithm is applied to the input maps[nmap-1] backwards towards
maps[0]. This has the effect of a more "shallow" recursion depth in general
since the input is in BFS. Also, when combined with the natural order of
processing l_initfini[] at each node, this creates a resulting output sorting
closer to the intuitive "left-to-right" order in most cases.

Another notable implementation adjustment related to this _dl_sort_maps change
is the removing of two char arrays 'used' and 'done' in _dl_close_worker to
represent two per-map attributes. This has been changed to simply use two new
bit-fields l_map_used:1, l_map_done:1 added to struct link_map. This also allows
discarding the clunky 'used' array sorting that _dl_sort_maps had to sometimes
do along the way.

Tunable support for switching between different sorting algorithms at runtime is
also added. A new tunable 'glibc.rtld.dynamic_sort' with current valid values 1
(old algorithm) and 2 (new DFS algorithm) has been added. At time of commit
of this patch, the default setting is 1 (old algorithm).

Signed-off-by: Chung-Lin Tang  <cltang@codesourcery.com>
Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2021-10-21 11:23:53 -03:00
Chung-Lin Tang
e6fd79f379 elf: Testing infrastructure for ld.so DSO sorting (BZ #17645)
This is the first of a 2-part patch set that fixes slow DSO sorting behavior in
the dynamic loader, as reported in BZ #17645. In order to facilitate such a
large modification to the dynamic loader, this first patch implements a testing
framework for validating shared object sorting behavior, to enable comparison
between old/new sorting algorithms, and any later enhancements.

This testing infrastructure consists of a Python script
scripts/dso-ordering-test.py' which takes in a description language, consisting
of strings that describe a set of link dependency relations between DSOs, and
generates testcase programs and Makefile fragments to automatically test the
described situation, for example:

  a->b->c->d          # four objects linked one after another

  a->[bc]->d;b->c     # a depends on b and c, which both depend on d,
                      # b depends on c (b,c linked to object a in fixed order)

  a->b->c;{+a;%a;-a}  # a, b, c serially dependent, main program uses
                      # dlopen/dlsym/dlclose on object a

  a->b->c;{}!->[abc]  # a, b, c serially dependent; multiple tests generated
                      # to test all permutations of a, b, c ordering linked
                      # to main program

 (Above is just a short description of what the script can do, more
  documentation is in the script comments.)

Two files containing several new tests, elf/dso-sort-tests-[12].def are added,
including test scenarios for BZ #15311 and Redhat issue #1162810 [1].

Due to the nature of dynamic loader tests, where the sorting behavior and test
output occurs before/after main(), generating testcases to use
support/test-driver.c does not suffice to control meaningful timeout for ld.so.
Therefore a new utility program 'support/test-run-command', based on
test-driver.c/support_test_main.c has been added. This does the same testcase
control, but for a program specified through a command-line rather than at the
source code level. This utility is used to run the dynamic loader testcases
generated by dso-ordering-test.py.

[1] https://bugzilla.redhat.com/show_bug.cgi?id=1162810

Signed-off-by: Chung-Lin Tang  <cltang@codesourcery.com>
Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2021-10-21 11:23:53 -03:00