http://sourceware.org/ml/libc-alpha/2013-08/msg00084.html
Another batch of ieee854 macros and union replacement. These four
files also have bugs fixed with this patch. The fact that the two
doubles in an IBM long double may have different signs means that
negation and absolute value operations can't just twiddle one sign bit
as you can with ieee864 style extended double. fmodl, remainderl,
erfl and erfcl all had errors of this type. erfl also returned +1 for
large magnitude negative input where it should return -1. The hypotl
error is innocuous since the value adjusted twice is only used as a
flag. The e_hypotl.c tests for large "a" and small "b" are mutually
exclusive because we've already exited when x/y > 2**120. That allows
some further small simplifications.
[BZ #15734], [BZ #15735]
* sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Rewrite
all uses of ieee875 long double macros and unions. Simplify test
for 0.0L. Correct |x|<|y| and |x|=|y| test. Use
ldbl_extract_mantissa value for ix,iy exponents. Properly
normalize after ldbl_extract_mantissa, and don't add hidden bit
already handled. Don't treat low word of ieee854 mantissa like
low word of IBM long double and mask off bit when testing for
zero.
* sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl): Rewrite
all uses of ieee875 long double macros and unions. Simplify tests
for 0.0L and inf. Correct double adjustment of k. Delete dead code
adjusting ha,hb. Simplify code setting kld. Delete two600 and
two1022, instead use their values. Recognise that tests for large
"a" and small "b" are mutually exclusive. Rename vars. Comment.
* sysdeps/ieee754/ldbl-128ibm/e_remainderl.c (__ieee754_remainderl):
Rewrite all uses of ieee875 long double macros and unions. Simplify
test for 0.0L and nan. Correct negation.
* sysdeps/ieee754/ldbl-128ibm/s_erfl.c (__erfl): Rewrite all uses of
ieee875 long double macros and unions. Correct output for large
magnitude x. Correct absolute value calculation.
(__erfcl): Likewise.
* math/libm-test.inc: Add tests for errors discovered in IBM long
double versions of fmodl, remainderl, erfl and erfcl.
In 128-bit IBM long double the precision of the type
decreases as you approach subnormal numbers, equaling
that of a double for subnormal numbers. Therefore
adjust the computation in ulp to use 2^(MIN_EXP - MANT_DIG)
which is correct for FP_SUBNORMAL for all types.
The current value used for ulp near zero is wrong,
and this commit fixes it such that ulp(0) is the smallest
subnormal value nearest to zero, which makes the most
sense for testing values near zero. Note that this is not
what Java does; they use the nearest normal value, which
is less accurate than what we want for glibc. Note that
there is no correct implementation of ulp since there
is no strict mathmatical definition that is accepted by
all groups using IEEE 754.
Previously with the large ulp values near zero there
were tests that previously passed, but were in fact
billions of ulp away from the precise answer. With this
commit we now need to disable one of the cpow tests which
is revealed to be inaccurate (bug 14473).
---
2013-05-24 Carlos O'Donell <carlos@redhat.com>
* math/libm-test.inc (MAX_EXP): Define.
(ULPDIFF): Define.
(ulp): New function.
(check_float_internal): Use ULPDIFF.
(cpow_test): Disable failing test.
(check_ulp): Test ulp() implemetnation.
(main): Call check_ulp before starting tests.