/* Machine-dependent ELF dynamic relocation inline functions. MIPS64 version. Copyright (C) 1996, 1997, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Kazumoto Kojima . The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #ifndef dl_machine_h #define dl_machine_h #define ELF_MACHINE_NAME "MIPS" #define ELF_MACHINE_NO_PLT #include #ifndef ENTRY_POINT #error ENTRY_POINT needs to be defined for MIPS. #endif #ifndef _RTLD_PROLOGUE # define _RTLD_PROLOGUE(entry) "\n\t.globl " __STRING(entry) \ "\n\t.ent " __STRING(entry) \ "\n\t" __STRING(entry) ":\n\t" #endif #ifndef _RTLD_EPILOGUE # define _RTLD_EPILOGUE(entry) "\t.end " __STRING(entry) "\n" #endif /* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. This makes no sense on MIPS but we have to define this to R_MIPS_REL32 to avoid the asserts in dl-lookup.c from blowing. */ #define ELF_MACHINE_JMP_SLOT R_MIPS_REL32 #define elf_machine_lookup_noplt_p(type) (1) #define elf_machine_lookup_noexec_p(type) (0) /* Translate a processor specific dynamic tag to the index in l_info array. */ #define DT_MIPS(x) (DT_MIPS_##x - DT_LOPROC + DT_NUM) #if 0 /* We may need 64k alignment. */ #define ELF_MACHINE_ALIGN_MASK 0xffff #endif /* * MIPS libraries are usually linked to a non-zero base address. We * subtrace the base address from the address where we map the object * to. This results in more efficient address space usage. */ #if 0 #define MAP_BASE_ADDR(l) ((l)->l_info[DT_MIPS(BASE_ADDRESS)] ? \ (l)->l_info[DT_MIPS(BASE_ADDRESS)]->d_un.d_ptr : 0) #else #define MAP_BASE_ADDR(l) 0x5ffe0000 #endif /* If there is a DT_MIPS_RLD_MAP entry in the dynamic section, fill it in with the run-time address of the r_debug structure */ #define ELF_MACHINE_DEBUG_SETUP(l,r) \ do { if ((l)->l_info[DT_MIPS (RLD_MAP)]) \ *(ElfW(Addr) *)((l)->l_info[DT_MIPS (RLD_MAP)]->d_un.d_ptr) = \ (ElfW(Addr)) (r); \ } while (0) /* Return nonzero iff ELF header is compatible with the running host. */ static inline int __attribute__ ((unused)) elf_machine_matches_host (const ElfW(Ehdr) *ehdr) { switch (ehdr->e_machine) { case EM_MIPS: case EM_MIPS_RS3_LE: return 1; default: return 0; } } static inline ElfW(Addr) * elf_mips_got_from_gpreg (ElfW(Addr) gpreg) { /* FIXME: the offset of gp from GOT may be system-dependent. */ return (ElfW(Addr) *) (gpreg - 0x7ff0); } /* Return the link-time address of _DYNAMIC. Conveniently, this is the first element of the GOT. This must be inlined in a function which uses global data. */ static inline ElfW(Addr) elf_machine_dynamic (void) { register ElfW(Addr) gp __asm__ ("$28"); return *elf_mips_got_from_gpreg (gp); } /* Return the run-time load address of the shared object. */ static inline ElfW(Addr) elf_machine_load_address (void) { ElfW(Addr) addr; asm (" .set noreorder\n" " dla %0, here\n" " bltzal $0, here\n" " nop\n" "here: dsubu %0, $31, %0\n" " .set reorder\n" : "=r" (addr) : /* No inputs */ : "$31"); return addr; } /* The MSB of got[1] of a gnu object is set to identify gnu objects. */ #define ELF_MIPS_GNU_GOT1_MASK 0x80000000 /* Relocate GOT. */ static inline void elf_machine_got_rel (struct link_map *map, int lazy) { ElfW(Addr) *got; ElfW(Sym) *sym; int i, n; const char *strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]); #define RESOLVE_GOTSYM(sym) \ ({ \ const ElfW(Sym) *ref = sym; \ ElfW(Addr) sym_loadaddr; \ sym_loadaddr = _dl_lookup_symbol (strtab + sym->st_name, &ref, \ map->l_scope, \ map->l_name, R_MIPS_REL32);\ (ref)? sym_loadaddr + ref->st_value: 0; \ }) got = (ElfW(Addr) *) D_PTR (map, l_info[DT_PLTGOT]); /* got[0] is reserved. got[1] is also reserved for the dynamic object generated by gnu ld. Skip these reserved entries from relocation. */ i = (got[1] & ELF_MIPS_GNU_GOT1_MASK)? 2: 1; n = map->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val; /* Add the run-time display to all local got entries. */ while (i < n) got[i++] += map->l_addr; /* Handle global got entries. */ got += n; sym = (ElfW(Sym) *) D_PTR (map, l_info[DT_SYMTAB]); sym += map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val; i = (map->l_info[DT_MIPS (SYMTABNO)]->d_un.d_val - map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val); while (i--) { if (sym->st_shndx == SHN_UNDEF) { if (ELFW(ST_TYPE) (sym->st_info) == STT_FUNC) { if (sym->st_value && lazy) *got = sym->st_value + map->l_addr; else *got = RESOLVE_GOTSYM (sym); } else /* if (*got == 0 || *got == QS) */ *got = RESOLVE_GOTSYM (sym); } else if (sym->st_shndx == SHN_COMMON) *got = RESOLVE_GOTSYM (sym); else if (ELFW(ST_TYPE) (sym->st_info) == STT_FUNC && *got != sym->st_value && lazy) *got += map->l_addr; else if (ELFW(ST_TYPE) (sym->st_info) == STT_SECTION) { if (sym->st_other == 0) *got += map->l_addr; } else *got = RESOLVE_GOTSYM (sym); got++; sym++; } #undef RESOLVE_GOTSYM return; } /* Set up the loaded object described by L so its stub function will jump to the on-demand fixup code in dl-runtime.c. */ static inline int elf_machine_runtime_setup (struct link_map *l, int lazy, int profile) { ElfW(Addr) *got; extern void _dl_runtime_resolve (ElfW(Word)); extern int _dl_mips_gnu_objects; #ifdef RTLD_BOOTSTRAP { return lazy; } #endif if (lazy) { /* The GOT entries for functions have not yet been filled in. Their initial contents will arrange when called to put an offset into the .dynsym section in t8, the return address in t7 and then jump to _GLOBAL_OFFSET_TABLE[0]. */ got = (ElfW(Addr) *) D_PTR (l, l_info[DT_PLTGOT]); /* This function will get called to fix up the GOT entry indicated by the register t8, and then jump to the resolved address. */ got[0] = (ElfW(Addr)) &_dl_runtime_resolve; /* Store l to _GLOBAL_OFFSET_TABLE[1] for gnu object. The MSB of got[1] of a gnu object is set to identify gnu objects. Where we can store l for non gnu objects? XXX */ if ((got[1] & ELF_MIPS_GNU_GOT1_MASK) != 0) got[1] = (ElfW(Addr)) ((unsigned) l | ELF_MIPS_GNU_GOT1_MASK); else _dl_mips_gnu_objects = 0; } /* Relocate global offset table. */ elf_machine_got_rel (l, lazy); return lazy; } /* Get link_map for this object. */ static inline struct link_map * elf_machine_runtime_link_map (ElfW(Addr) gpreg, ElfW(Addr) stub_pc) { extern int _dl_mips_gnu_objects; /* got[1] is reserved to keep its link map address for the shared object generated by the gnu linker. If all are such objects, we can find the link map from current GPREG simply. If not so, get the link map for caller's object containing STUB_PC. */ if (_dl_mips_gnu_objects) { ElfW(Addr) *got = elf_mips_got_from_gpreg (gpreg); ElfW(Word) g1; g1 = ((ElfW(Word) *) got)[1]; if ((g1 & ELF_MIPS_GNU_GOT1_MASK) != 0) { struct link_map *l = (struct link_map *) (g1 & ~ELF_MIPS_GNU_GOT1_MASK); ElfW(Addr) base, limit; const ElfW(Phdr) *p = l->l_phdr; ElfW(Half) this, nent = l->l_phnum; /* For the common case of a stub being called from the containing object, STUB_PC will point to somewhere within the object that is described by the link map fetched via got[1]. Otherwise we have to scan all maps. */ for (this = 0; this < nent; this++) { if (p[this].p_type == PT_LOAD) { base = p[this].p_vaddr + l->l_addr; limit = base + p[this].p_memsz; if (stub_pc >= base && stub_pc < limit) return l; } this++; } } } { struct link_map *l = _dl_loaded; while (l) { ElfW(Addr) base, limit; const ElfW(Phdr) *p = l->l_phdr; ElfW(Half) this, nent = l->l_phnum; for (this = 0; this < nent; this++) { if (p[this].p_type == PT_LOAD) { base = p[this].p_vaddr + l->l_addr; limit = base + p[this].p_memsz; if (stub_pc >= base && stub_pc < limit) return l; } } l = l->l_next; } } _dl_signal_error (0, NULL, "cannot find runtime link map"); return NULL; } /* Mips has no PLT but define elf_machine_relplt to be elf_machine_rel. */ #define elf_machine_relplt elf_machine_rel /* Define mips specific runtime resolver. The function __dl_runtime_resolve is called from assembler function _dl_runtime_resolve which converts special argument registers t7 ($15) and t8 ($24): t7 address to return to the caller of the function t8 index for this function symbol in .dynsym to usual c arguments. */ #define ELF_MACHINE_RUNTIME_TRAMPOLINE \ /* The flag _dl_mips_gnu_objects is set if all dynamic objects are \ generated by the gnu linker. */ \ int _dl_mips_gnu_objects = 1; \ \ /* This is called from assembly stubs below which the compiler can't see. */ \ static ElfW(Addr) \ __dl_runtime_resolve (ElfW(Word), ElfW(Word), ElfW(Addr), ElfW(Addr)) \ __attribute__ ((unused)); \ \ static ElfW(Addr) \ __dl_runtime_resolve (ElfW(Word) sym_index, \ ElfW(Word) return_address, \ ElfW(Addr) old_gpreg, \ ElfW(Addr) stub_pc) \ { \ struct link_map *l = elf_machine_runtime_link_map (old_gpreg, stub_pc); \ const ElfW(Sym) *const symtab \ = (const ElfW(Sym) *) D_PTR (l, l_info[DT_SYMTAB]); \ const char *strtab = (const void *) D_PTR (l, l_info[DT_STRTAB]); \ const ElfW(Addr) *got \ = (const ElfW(Addr) *) D_PTR (l, l_info[DT_PLTGOT]); \ const ElfW(Word) local_gotno \ = (const ElfW(Word)) l->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val; \ const ElfW(Word) gotsym \ = (const ElfW(Word)) l->l_info[DT_MIPS (GOTSYM)]->d_un.d_val; \ const ElfW(Sym) *definer; \ ElfW(Addr) loadbase; \ ElfW(Addr) funcaddr; \ \ /* Look up the symbol's run-time value. */ \ definer = &symtab[sym_index]; \ \ loadbase = _dl_lookup_symbol (strtab + definer->st_name, &definer, \ l->l_scope, l->l_name, \ R_MIPS_REL32); \ \ /* Apply the relocation with that value. */ \ funcaddr = loadbase + definer->st_value; \ *(got + local_gotno + sym_index - gotsym) = funcaddr; \ \ return funcaddr; \ } \ \ asm ("\n \ .text\n \ .align 3\n \ .globl _dl_runtime_resolve\n \ .type _dl_runtime_resolve,@function\n \ .ent _dl_runtime_resolve\n \ _dl_runtime_resolve:\n \ .set noreorder\n \ # Save old GP to $3.\n \ move $3,$28\n \ # Modify t9 ($25) so as to point .cpload instruction.\n \ daddu $25,2*8\n \ # Compute GP.\n \ .cpload $25\n \ .set reorder\n \ # Save slot call pc.\n \ move $2, $31\n \ # Save arguments and sp value in stack.\n \ dsubu $29, 10*8\n \ .cprestore 8*8\n \ sd $15, 9*8($29)\n \ sd $4, 3*8($29)\n \ sd $5, 4*8($29)\n \ sd $6, 5*8($29)\n \ sd $7, 6*8($29)\n \ sd $16, 7*8($29)\n \ move $16, $29\n \ move $4, $24\n \ move $5, $15\n \ move $6, $3\n \ move $7, $2\n \ jal __dl_runtime_resolve\n \ move $29, $16\n \ ld $31, 9*8($29)\n \ ld $4, 3*8($29)\n \ ld $5, 4*8($29)\n \ ld $6, 5*8($29)\n \ ld $7, 6*8($29)\n \ ld $16, 7*8($29)\n \ daddu $29, 10*8\n \ move $25, $2\n \ jr $25\n \ .end _dl_runtime_resolve\n \ .previous\n \ "); /* Mask identifying addresses reserved for the user program, where the dynamic linker should not map anything. */ #define ELF_MACHINE_USER_ADDRESS_MASK 0x80000000UL /* Initial entry point code for the dynamic linker. The C function `_dl_start' is the real entry point; its return value is the user program's entry point. Note how we have to be careful about two things: 1) That we allocate a minimal stack of 24 bytes for every function call, the MIPS ABI states that even if all arguments are passed in registers the procedure called can use the 16 byte area pointed to by $sp when it is called to store away the arguments passed to it. 2) That under Linux the entry is named __start and not just plain _start. */ #define RTLD_START asm ("\ .text\n\ .align 3\n"\ _RTLD_PROLOGUE (ENTRY_POINT)\ " .globl _dl_start_user\n\ .set noreorder\n\ bltzal $0, 0f\n\ nop\n\ 0: .cpload $31\n\ .set reorder\n\ # i386 ABI book says that the first entry of GOT holds\n\ # the address of the dynamic structure. Though MIPS ABI\n\ # doesn't say nothing about this, I emulate this here.\n\ dla $4, _DYNAMIC\n\ sd $4, -0x7ff0($28)\n\ dsubu $29, 16\n\ move $4, $29\n\ jal _dl_start\n\ daddiu $29, 16\n\ # Get the value of label '_dl_start_user' in t9 ($25).\n\ dla $25, _dl_start_user\n\ _dl_start_user:\n\ .set noreorder\n\ .cpload $25\n\ .set reorder\n\ move $16, $28\n\ # Save the user entry point address in saved register.\n\ move $17, $2\n\ # Store the highest stack address\n\ sd $29, __libc_stack_end\n\ # See if we were run as a command with the executable file\n\ # name as an extra leading argument.\n\ ld $2, _dl_skip_args\n\ beq $2, $0, 1f\n\ # Load the original argument count.\n\ ld $4, 0($29)\n\ # Subtract _dl_skip_args from it.\n\ dsubu $4, $2\n\ # Adjust the stack pointer to skip _dl_skip_args words.\n\ dsll $2,2\n\ daddu $29, $2\n\ # Save back the modified argument count.\n\ sd $4, 0($29)\n\ 1: # Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env) \n\ ld $4, _dl_loaded\n\ ld $5, 0($29)\n\ dla $6, 4($29)\n\ dla $7, 8($29)\n\ dsubu $29, 16\n\ # Call the function to run the initializers.\n\ jal _dl_init daddiu $29, 16\n\ # Pass our finalizer function to the user in ra.\n\ dla $31, _dl_fini\n\ # Jump to the user entry point.\n\ 1: # Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env) \n\ lw $4, _dl_loaded\n\ lw $5, 0($29)\n\ la $6, 4($29)\n\ la $7, 8($29)\n\ subu $29, 16\n\ # Call the function to run the initializers.\n\ jal _dl_init addiu $29, 16\n\ # Pass our finalizer function to the user in ra.\n\ dla $31, _dl_fini\n\ # Jump to the user entry point.\n\ move $25, $17\n\ ld $4, 0($29)\n\ ld $5, 1*8($29)\n\ ld $6, 2*8$29)\n\ ld $7, 3*8($29)\n\ jr $25\n"\ _RTLD_EPILOGUE(ENTRY_POINT) \ "\n.previous"\ ); /* The MIPS never uses Elfxx_Rela relocations. */ #define ELF_MACHINE_NO_RELA 1 #endif /* !dl_machine_h */ #ifdef RESOLVE /* Perform the relocation specified by RELOC and SYM (which is fully resolved). MAP is the object containing the reloc. */ static inline void elf_machine_rel (struct link_map *map, const ElfW(Rel) *reloc, const ElfW(Sym) *sym, const struct r_found_version *version, ElfW(Addr) *const reloc_addr) { const unsigned long int r_type = ELFW(R_TYPE) (reloc->r_info); ElfW(Addr) loadbase; ElfW(Addr) undo __attribute__ ((unused)); switch (r_type) { case R_MIPS_REL32: { ElfW(Addr) undo = 0; if (ELFW(ST_BIND) (sym->st_info) == STB_LOCAL && (ELFW(ST_TYPE) (sym->st_info) == STT_SECTION || ELFW(ST_TYPE) (sym->st_info) == STT_NOTYPE)) { *reloc_addr += map->l_addr; break; } #ifndef RTLD_BOOTSTRAP /* This is defined in rtld.c, but nowhere in the static libc.a; make the reference weak so static programs can still link. This declaration cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP) because rtld.c contains the common defn for _dl_rtld_map, which is incompatible with a weak decl in the same file. */ weak_extern (_dl_rtld_map); if (map == &_dl_rtld_map) /* Undo the relocation done here during bootstrapping. Now we will relocate it anew, possibly using a binding found in the user program or a loaded library rather than the dynamic linker's built-in definitions used while loading those libraries. */ undo = map->l_addr + sym->st_value; #endif loadbase = RESOLVE (&sym, version, 0); *reloc_addr += (sym ? (loadbase + sym->st_value) : 0) - undo; } break; #ifndef RTLD_BOOTSTRAP case R_MIPS_NONE: /* Alright, Wilbur. */ break; #endif default: _dl_reloc_bad_type (map, r_type, 0); break; } } static inline void elf_machine_rel_relative (ElfW(Addr) l_addr, const ElfW(Rel) *reloc, ElfW(Addr) *const reloc_addr) { /* XXX Nothing to do. There is no relative relocation, right? */ } static inline void elf_machine_lazy_rel (struct link_map *map, ElfW(Addr) l_addr, const ElfW(Rel) *reloc) { /* Do nothing. */ } #endif /* RESOLVE */