/* Compute complex base 10 logarithm. Copyright (C) 1997-2020 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <https://www.gnu.org/licenses/>. */ #include <complex.h> #include <math.h> #include <math_private.h> #include <math-underflow.h> #include <float.h> /* log_10 (2). */ #define LOG10_2 M_LIT (0.3010299956639811952137388947244930267682) /* pi * log10 (e). */ #define PI_LOG10E M_LIT (1.364376353841841347485783625431355770210) CFLOAT M_DECL_FUNC (__clog10) (CFLOAT x) { CFLOAT result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? PI_LOG10E : 0; __imag__ result = M_COPYSIGN (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1 / M_FABS (__real__ x); } else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) { /* Neither real nor imaginary part is NaN. */ FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x); int scale = 0; if (absx < absy) { FLOAT t = absx; absx = absy; absy = t; } if (absx > M_MAX / 2) { scale = -1; absx = M_SCALBN (absx, scale); absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0); } else if (absx < M_MIN && absy < M_MIN) { scale = M_MANT_DIG; absx = M_SCALBN (absx, scale); absy = M_SCALBN (absy, scale); } if (absx == 1 && scale == 0) { __real__ result = (M_LOG1P (absy * absy) * ((FLOAT) M_MLIT (M_LOG10E) / 2)); math_check_force_underflow_nonneg (__real__ result); } else if (absx > 1 && absx < 2 && absy < 1 && scale == 0) { FLOAT d2m1 = (absx - 1) * (absx + 1); if (absy >= M_EPSILON) d2m1 += absy * absy; __real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2); } else if (absx < 1 && absx >= M_LIT (0.5) && absy < M_EPSILON / 2 && scale == 0) { FLOAT d2m1 = (absx - 1) * (absx + 1); __real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2); } else if (absx < 1 && absx >= M_LIT (0.5) && scale == 0 && absx * absx + absy * absy >= M_LIT (0.5)) { FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy); __real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2); } else { FLOAT d = M_HYPOT (absx, absy); __real__ result = M_SUF (__ieee754_log10) (d) - scale * LOG10_2; } __imag__ result = M_MLIT (M_LOG10E) * M_ATAN2 (__imag__ x, __real__ x); } else { __imag__ result = M_NAN; if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = M_HUGE_VAL; else __real__ result = M_NAN; } return result; } declare_mgen_alias (__clog10, clog10)