/* Double-precision vector (AdvSIMD) pow function Copyright (C) 2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" /* Defines parameters of the approximation and scalar fallback. */ #include "finite_pow.h" #define VecSmallExp v_u64 (SmallExp) #define VecThresExp v_u64 (ThresExp) #define VecSmallPowX v_u64 (SmallPowX) #define VecThresPowX v_u64 (ThresPowX) #define VecSmallPowY v_u64 (SmallPowY) #define VecThresPowY v_u64 (ThresPowY) static const struct data { float64x2_t log_poly[6]; float64x2_t exp_poly[3]; float64x2_t ln2_hi, ln2_lo; float64x2_t shift, inv_ln2_n, ln2_hi_n, ln2_lo_n, small_powx; uint64x2_t inf; } data = { /* Coefficients copied from v_pow_log_data.c relative error: 0x1.11922ap-70 in [-0x1.6bp-8, 0x1.6bp-8] Coefficients are scaled to match the scaling during evaluation. */ .log_poly = { V2 (0x1.555555555556p-2 * -2), V2 (-0x1.0000000000006p-2 * -2), V2 (0x1.999999959554ep-3 * 4), V2 (-0x1.555555529a47ap-3 * 4), V2 (0x1.2495b9b4845e9p-3 * -8), V2 (-0x1.0002b8b263fc3p-3 * -8) }, .ln2_hi = V2 (0x1.62e42fefa3800p-1), .ln2_lo = V2 (0x1.ef35793c76730p-45), /* Polynomial coefficients: abs error: 1.43*2^-58, ulp error: 0.549 (0.550 without fma) if |x| < ln2/512. */ .exp_poly = { V2 (0x1.fffffffffffd4p-2), V2 (0x1.5555571d6ef9p-3), V2 (0x1.5555576a5adcep-5) }, .shift = V2 (0x1.8p52), /* round to nearest int. without intrinsics. */ .inv_ln2_n = V2 (0x1.71547652b82fep8), /* N/ln2. */ .ln2_hi_n = V2 (0x1.62e42fefc0000p-9), /* ln2/N. */ .ln2_lo_n = V2 (-0x1.c610ca86c3899p-45), .small_powx = V2 (0x1p-126), .inf = V2 (0x7ff0000000000000) }; #define A(i) data.log_poly[i] #define C(i) data.exp_poly[i] /* This version implements an algorithm close to scalar pow but - does not implement the trick in the exp's specialcase subroutine to avoid double-rounding, - does not use a tail in the exponential core computation, - and pow's exp polynomial order and table bits might differ. Maximum measured error is 1.04 ULPs: _ZGVnN2vv_pow(0x1.024a3e56b3c3p-136, 0x1.87910248b58acp-13) got 0x1.f71162f473251p-1 want 0x1.f71162f473252p-1. */ static inline float64x2_t v_masked_lookup_f64 (const double *table, uint64x2_t i) { return (float64x2_t){ table[(i[0] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)], table[(i[1] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)] }; } /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about additional 15 bits precision. IX is the bit representation of x, but normalized in the subnormal range using the sign bit for the exponent. */ static inline float64x2_t v_log_inline (uint64x2_t ix, float64x2_t *tail, const struct data *d) { /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. The range is split into N subintervals. The ith subinterval contains z and c is near its center. */ uint64x2_t tmp = vsubq_u64 (ix, v_u64 (Off)); int64x2_t k = vshrq_n_s64 (vreinterpretq_s64_u64 (tmp), 52); /* arithmetic shift. */ uint64x2_t iz = vsubq_u64 (ix, vandq_u64 (tmp, v_u64 (0xfffULL << 52))); float64x2_t z = vreinterpretq_f64_u64 (iz); float64x2_t kd = vcvtq_f64_s64 (k); /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ float64x2_t invc = v_masked_lookup_f64 (__v_pow_log_data.invc, tmp); float64x2_t logc = v_masked_lookup_f64 (__v_pow_log_data.logc, tmp); float64x2_t logctail = v_masked_lookup_f64 (__v_pow_log_data.logctail, tmp); /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, invc); /* k*Ln2 + log(c) + r. */ float64x2_t t1 = vfmaq_f64 (logc, kd, d->ln2_hi); float64x2_t t2 = vaddq_f64 (t1, r); float64x2_t lo1 = vfmaq_f64 (logctail, kd, d->ln2_lo); float64x2_t lo2 = vaddq_f64 (vsubq_f64 (t1, t2), r); /* Evaluation is optimized assuming superscalar pipelined execution. */ float64x2_t ar = vmulq_f64 (v_f64 (-0.5), r); float64x2_t ar2 = vmulq_f64 (r, ar); float64x2_t ar3 = vmulq_f64 (r, ar2); /* k*Ln2 + log(c) + r + A[0]*r*r. */ float64x2_t hi = vaddq_f64 (t2, ar2); float64x2_t lo3 = vfmaq_f64 (vnegq_f64 (ar2), ar, r); float64x2_t lo4 = vaddq_f64 (vsubq_f64 (t2, hi), ar2); /* p = log1p(r) - r - A[0]*r*r. */ float64x2_t a56 = vfmaq_f64 (A (4), r, A (5)); float64x2_t a34 = vfmaq_f64 (A (2), r, A (3)); float64x2_t a12 = vfmaq_f64 (A (0), r, A (1)); float64x2_t p = vfmaq_f64 (a34, ar2, a56); p = vfmaq_f64 (a12, ar2, p); p = vmulq_f64 (ar3, p); float64x2_t lo = vaddq_f64 (vaddq_f64 (vaddq_f64 (vaddq_f64 (lo1, lo2), lo3), lo4), p); float64x2_t y = vaddq_f64 (hi, lo); *tail = vaddq_f64 (vsubq_f64 (hi, y), lo); return y; } static float64x2_t VPCS_ATTR NOINLINE exp_special_case (float64x2_t x, float64x2_t xtail) { return (float64x2_t){ exp_nosignbias (x[0], xtail[0]), exp_nosignbias (x[1], xtail[1]) }; } /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. */ static inline float64x2_t v_exp_inline (float64x2_t x, float64x2_t xtail, const struct data *d) { /* Fallback to scalar exp_inline for all lanes if any lane contains value of x s.t. |x| <= 2^-54 or >= 512. */ uint64x2_t abstop = vshrq_n_u64 (vandq_u64 (vreinterpretq_u64_f64 (x), d->inf), 52); uint64x2_t uoflowx = vcgeq_u64 (vsubq_u64 (abstop, VecSmallExp), VecThresExp); if (__glibc_unlikely (v_any_u64 (uoflowx))) return exp_special_case (x, xtail); /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */ float64x2_t z = vmulq_f64 (d->inv_ln2_n, x); /* z - kd is in [-1, 1] in non-nearest rounding modes. */ float64x2_t kd = vaddq_f64 (z, d->shift); uint64x2_t ki = vreinterpretq_u64_f64 (kd); kd = vsubq_f64 (kd, d->shift); float64x2_t r = vfmsq_f64 (x, kd, d->ln2_hi_n); r = vfmsq_f64 (r, kd, d->ln2_lo_n); /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ r = vaddq_f64 (r, xtail); /* 2^(k/N) ~= scale. */ uint64x2_t idx = vandq_u64 (ki, v_u64 (N_EXP - 1)); uint64x2_t top = vshlq_n_u64 (ki, 52 - V_POW_EXP_TABLE_BITS); /* This is only a valid scale when -1023*N < k < 1024*N. */ uint64x2_t sbits = v_lookup_u64 (SBits, idx); sbits = vaddq_u64 (sbits, top); /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */ float64x2_t r2 = vmulq_f64 (r, r); float64x2_t tmp = vfmaq_f64 (C (1), r, C (2)); tmp = vfmaq_f64 (C (0), r, tmp); tmp = vfmaq_f64 (r, r2, tmp); float64x2_t scale = vreinterpretq_f64_u64 (sbits); /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there is no spurious underflow here even without fma. */ return vfmaq_f64 (scale, scale, tmp); } static float64x2_t NOINLINE VPCS_ATTR scalar_fallback (float64x2_t x, float64x2_t y) { return (float64x2_t){ pow_scalar_special_case (x[0], y[0]), pow_scalar_special_case (x[1], y[1]) }; } float64x2_t VPCS_ATTR V_NAME_D2 (pow) (float64x2_t x, float64x2_t y) { const struct data *d = ptr_barrier (&data); /* Case of x <= 0 is too complicated to be vectorised efficiently here, fallback to scalar pow for all lanes if any x < 0 detected. */ if (v_any_u64 (vclezq_s64 (vreinterpretq_s64_f64 (x)))) return scalar_fallback (x, y); uint64x2_t vix = vreinterpretq_u64_f64 (x); uint64x2_t viy = vreinterpretq_u64_f64 (y); uint64x2_t iay = vandq_u64 (viy, d->inf); /* Special cases of x or y. */ #if WANT_SIMD_EXCEPT /* Small or large. */ uint64x2_t vtopx = vshrq_n_u64 (vix, 52); uint64x2_t vabstopy = vshrq_n_u64 (iay, 52); uint64x2_t specialx = vcgeq_u64 (vsubq_u64 (vtopx, VecSmallPowX), VecThresPowX); uint64x2_t specialy = vcgeq_u64 (vsubq_u64 (vabstopy, VecSmallPowY), VecThresPowY); #else /* The case y==0 does not trigger a special case, since in this case it is necessary to fix the result only if x is a signalling nan, which already triggers a special case. We test y==0 directly in the scalar fallback. */ uint64x2_t iax = vandq_u64 (vix, d->inf); uint64x2_t specialx = vcgeq_u64 (iax, d->inf); uint64x2_t specialy = vcgeq_u64 (iay, d->inf); #endif uint64x2_t special = vorrq_u64 (specialx, specialy); /* Fallback to scalar on all lanes if any lane is inf or nan. */ if (__glibc_unlikely (v_any_u64 (special))) return scalar_fallback (x, y); /* Small cases of x: |x| < 0x1p-126. */ uint64x2_t smallx = vcaltq_f64 (x, d->small_powx); if (__glibc_unlikely (v_any_u64 (smallx))) { /* Update ix if top 12 bits of x are 0. */ uint64x2_t sub_x = vceqzq_u64 (vshrq_n_u64 (vix, 52)); if (__glibc_unlikely (v_any_u64 (sub_x))) { /* Normalize subnormal x so exponent becomes negative. */ uint64x2_t vix_norm = vreinterpretq_u64_f64 ( vabsq_f64 (vmulq_f64 (x, vcvtq_f64_u64 (v_u64 (1ULL << 52))))); vix_norm = vsubq_u64 (vix_norm, v_u64 (52ULL << 52)); vix = vbslq_u64 (sub_x, vix_norm, vix); } } /* Vector Log(ix, &lo). */ float64x2_t vlo; float64x2_t vhi = v_log_inline (vix, &vlo, d); /* Vector Exp(y_loghi, y_loglo). */ float64x2_t vehi = vmulq_f64 (y, vhi); float64x2_t velo = vmulq_f64 (y, vlo); float64x2_t vemi = vfmsq_f64 (vehi, y, vhi); velo = vsubq_f64 (velo, vemi); return v_exp_inline (vehi, velo, d); }