/* Operating system support for run-time dynamic linker. Generic Unix version. Copyright (C) 1995-1998, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern char **_environ; extern void _end; /* Protect SUID program against misuse of file descriptors. */ extern void __libc_check_standard_fds (void); #ifdef NEED_DL_BASE_ADDR ElfW(Addr) _dl_base_addr; #endif int __libc_enable_secure = 0; INTVARDEF(__libc_enable_secure) int __libc_multiple_libcs = 0; /* Defining this here avoids the inclusion of init-first. */ /* This variable contains the lowest stack address ever used. */ void *__libc_stack_end; static ElfW(auxv_t) *_dl_auxv; #ifndef DL_FIND_ARG_COMPONENTS # define DL_FIND_ARG_COMPONENTS(cookie, argc, argv, envp, auxp) \ do { \ void **_tmp; \ (argc) = *(long int *) cookie; \ (argv) = (char **) ((long int *) cookie + 1); \ (envp) = (argv) + (argc) + 1; \ for (_tmp = (void **) (envp); *_tmp; ++_tmp) \ continue; \ (auxp) = (void *) ++_tmp; \ } while (0) #endif ElfW(Addr) _dl_sysdep_start (void **start_argptr, void (*dl_main) (const ElfW(Phdr) *phdr, ElfW(Word) phnum, ElfW(Addr) *user_entry)) { const ElfW(Phdr) *phdr = NULL; ElfW(Word) phnum = 0; ElfW(Addr) user_entry; ElfW(auxv_t) *av; uid_t uid = 0; uid_t euid = 0; gid_t gid = 0; gid_t egid = 0; #ifdef HAVE_AUX_XID # define set_seen(tag) (tag) /* Evaluate for the side effects. */ #else unsigned int seen = 0; # define M(type) (1 << (type)) # define set_seen(tag) seen |= M ((tag)->a_type) #endif DL_FIND_ARG_COMPONENTS (start_argptr, _dl_argc, INTUSE(_dl_argv), _environ, _dl_auxv); user_entry = (ElfW(Addr)) ENTRY_POINT; GL(dl_platform) = NULL; /* Default to nothing known about the platform. */ for (av = _dl_auxv; av->a_type != AT_NULL; set_seen (av++)) switch (av->a_type) { case AT_PHDR: phdr = av->a_un.a_ptr; break; case AT_PHNUM: phnum = av->a_un.a_val; break; case AT_PAGESZ: GL(dl_pagesize) = av->a_un.a_val; break; case AT_ENTRY: user_entry = av->a_un.a_val; break; #ifdef NEED_DL_BASE_ADDR case AT_BASE: _dl_base_addr = av->a_un.a_val; break; #endif case AT_UID: uid = av->a_un.a_val; break; case AT_GID: gid = av->a_un.a_val; break; case AT_EUID: euid = av->a_un.a_val; break; case AT_EGID: egid = av->a_un.a_val; break; case AT_PLATFORM: GL(dl_platform) = av->a_un.a_ptr; break; case AT_HWCAP: GL(dl_hwcap) = av->a_un.a_val; break; case AT_CLKTCK: GL(dl_clktck) = av->a_un.a_val; break; case AT_FPUCW: GL(dl_fpu_control) = av->a_un.a_val; break; } #ifdef DL_SYSDEP_OSCHECK DL_SYSDEP_OSCHECK (dl_fatal); #endif /* Linux doesn't provide us with any of these values on the stack when the dynamic linker is run directly as a program. */ #ifndef HAVE_AUX_XID # define SEE(UID, uid) if ((seen & M (AT_##UID)) == 0) uid = __get##uid () SEE (UID, uid); SEE (GID, gid); SEE (EUID, euid); SEE (EGID, egid); #endif INTUSE(__libc_enable_secure) = uid != euid || gid != egid; #ifndef HAVE_AUX_PAGESIZE if (GL(dl_pagesize) == 0) GL(dl_pagesize) = __getpagesize (); #endif #ifdef DL_SYSDEP_INIT DL_SYSDEP_INIT; #endif #ifdef DL_PLATFORM_INIT DL_PLATFORM_INIT; #endif /* Determine the length of the platform name. */ if (GL(dl_platform) != NULL) GL(dl_platformlen) = strlen (GL(dl_platform)); if (__sbrk (0) == &_end) /* The dynamic linker was run as a program, and so the initial break starts just after our bss, at &_end. The malloc in dl-minimal.c will consume the rest of this page, so tell the kernel to move the break up that far. When the user program examines its break, it will see this new value and not clobber our data. */ __sbrk (GL(dl_pagesize) - ((&_end - (void *) 0) & (GL(dl_pagesize) - 1))); /* If this is a SUID program we make sure that FDs 0, 1, and 2 are allocated. If necessary we are doing it ourself. If it is not possible we stop the program. */ if (__builtin_expect (INTUSE(__libc_enable_secure), 0)) __libc_check_standard_fds (); (*dl_main) (phdr, phnum, &user_entry); return user_entry; } void internal_function _dl_sysdep_start_cleanup (void) { } void internal_function _dl_show_auxv (void) { char buf[64]; ElfW(auxv_t) *av; /* Terminate string. */ buf[63] = '\0'; /* The following code assumes that the AT_* values are encoded starting from 0 with AT_NULL, 1 for AT_IGNORE, and all other values close by (otherwise the array will be too large). In case we have to support a platform where these requirements are not fulfilled some alternative implementation has to be used. */ for (av = _dl_auxv; av->a_type != AT_NULL; ++av) { static const struct { const char label[20]; enum { dec, hex, str } form; } auxvars[] = { [AT_EXECFD - 2] = { "AT_EXECFD: ", dec }, [AT_PHDR - 2] = { "AT_PHDR: 0x", hex }, [AT_PHENT - 2] = { "AT_PHENT: ", dec }, [AT_PHNUM - 2] = { "AT_PHNUM: ", dec }, [AT_PAGESZ - 2] = { "AT_PAGESZ: ", dec }, [AT_BASE - 2] = { "AT_BASE: 0x", hex }, [AT_FLAGS - 2] = { "AT_FLAGS: 0x", hex }, [AT_ENTRY - 2] = { "AT_ENTRY: 0x", hex }, [AT_NOTELF - 2] = { "AT_NOTELF: ", hex }, [AT_UID - 2] = { "AT_UID: ", dec }, [AT_EUID - 2] = { "AT_EUID: ", dec }, [AT_GID - 2] = { "AT_GID: ", dec }, [AT_EGID - 2] = { "AT_EGID: ", dec }, [AT_PLATFORM - 2] = { "AT_PLATFORM: ", str }, [AT_HWCAP - 2] = { "AT_HWCAP: ", hex }, [AT_CLKTCK - 2] = { "AT_CLKTCK: ", dec }, [AT_FPUCW - 2] = { "AT_FPUCW: ", hex }, [AT_DCACHEBSIZE - 2] = { "AT_DCACHEBSIZE: 0x", hex }, [AT_ICACHEBSIZE - 2] = { "AT_ICACHEBSIZE: 0x", hex }, [AT_UCACHEBSIZE - 2] = { "AT_UCACHEBSIZE: 0x", hex } }; unsigned int idx = (unsigned int) (av->a_type - 2); assert (AT_NULL == 0); assert (AT_IGNORE == 1); if (idx < sizeof (auxvars) / sizeof (auxvars[0])) { if (av->a_type != AT_HWCAP || _dl_procinfo (av->a_un.a_val) < 0) { const char *val = av->a_un.a_ptr; if (__builtin_expect (auxvars[idx].form, dec) == dec) val = _itoa ((unsigned long int) av->a_un.a_val, buf + sizeof buf - 1, 10, 0); else if (__builtin_expect (auxvars[idx].form, hex) == hex) val = _itoa ((unsigned long int) av->a_un.a_val, buf + sizeof buf - 1, 16, 0); _dl_printf ("%s%s\n", auxvars[idx].label, val); } } } } /* Return an array of useful/necessary hardware capability names. */ const struct r_strlenpair * internal_function _dl_important_hwcaps (const char *platform, size_t platform_len, size_t *sz, size_t *max_capstrlen) { /* Determine how many important bits are set. */ unsigned long int masked = GL(dl_hwcap) & GL(dl_hwcap_mask); size_t cnt = platform != NULL; size_t n, m; size_t total; struct r_strlenpair *temp; struct r_strlenpair *result; struct r_strlenpair *rp; char *cp; /* Count the number of bits set in the masked value. */ for (n = 0; (~((1UL << n) - 1) & masked) != 0; ++n) if ((masked & (1UL << n)) != 0) ++cnt; if (cnt == 0) { /* If we have platform name and no important capability we only have the base directory to search. */ result = (struct r_strlenpair *) malloc (sizeof (*result)); if (result == NULL) { no_memory: INTUSE(_dl_signal_error) (ENOMEM, NULL, NULL, N_("cannot create capability list")); } result[0].str = (char *) result; /* Does not really matter. */ result[0].len = 0; *sz = 1; return result; } /* Create temporary data structure to generate result table. */ temp = (struct r_strlenpair *) alloca (cnt * sizeof (*temp)); m = 0; for (n = 0; masked != 0; ++n) if ((masked & (1UL << n)) != 0) { temp[m].str = _dl_hwcap_string (n); temp[m].len = strlen (temp[m].str); masked ^= 1UL << n; ++m; } if (platform != NULL) { temp[m].str = platform; temp[m].len = platform_len; ++m; } assert (m == cnt); /* Determine the total size of all strings together. */ if (cnt == 1) total = temp[0].len; else { total = (1UL << (cnt - 2)) * (temp[0].len + temp[cnt - 1].len + 2); for (n = 1; n + 1 < cnt; ++n) total += (1UL << (cnt - 3)) * (temp[n].len + 1); } /* The result structure: we use a very compressed way to store the various combinations of capability names. */ *sz = 1 << cnt; result = (struct r_strlenpair *) malloc (*sz * sizeof (*result) + total); if (result == NULL) goto no_memory; if (cnt == 1) { result[0].str = (char *) (result + *sz); result[0].len = temp[0].len + 1; result[1].str = (char *) (result + *sz); result[1].len = 0; cp = __mempcpy ((char *) (result + *sz), temp[0].str, temp[0].len); *cp = '/'; *sz = 2; *max_capstrlen = result[0].len; return result; } /* Fill in the information. This follows the following scheme (indeces from TEMP for four strings): entry #0: 0, 1, 2, 3 binary: 1111 #1: 0, 1, 3 1101 #2: 0, 2, 3 1011 #3: 0, 3 1001 This allows the representation of all possible combinations of capability names in the string. First generate the strings. */ result[1].str = result[0].str = cp = (char *) (result + *sz); #define add(idx) \ cp = __mempcpy (__mempcpy (cp, temp[idx].str, temp[idx].len), "/", 1); if (cnt == 2) { add (1); add (0); } else { n = 1 << cnt; do { n -= 2; /* We always add the last string. */ add (cnt - 1); /* Add the strings which have the bit set in N. */ for (m = cnt - 2; m > 0; --m) if ((n & (1 << m)) != 0) add (m); /* Always add the first string. */ add (0); } while (n != 0); } #undef add /* Now we are ready to install the string pointers and length. */ for (n = 0; n < (1UL << cnt); ++n) result[n].len = 0; n = cnt; do { size_t mask = 1 << --n; rp = result; for (m = 1 << cnt; m > 0; ++rp) if ((--m & mask) != 0) rp->len += temp[n].len + 1; } while (n != 0); /* The first half of the strings all include the first string. */ n = (1 << cnt) - 2; rp = &result[2]; while (n != (1UL << (cnt - 1))) { if ((--n & 1) != 0) rp[0].str = rp[-2].str + rp[-2].len; else rp[0].str = rp[-1].str; ++rp; } /* The second have starts right after the first part of the string of corresponding entry in the first half. */ do { rp[0].str = rp[-(1 << (cnt - 1))].str + temp[cnt - 1].len + 1; ++rp; } while (--n != 0); /* The maximum string length. */ *max_capstrlen = result[0].len; return result; }