/* Single-precision SVE inverse cos Copyright (C) 2023 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "sv_math.h" #include "poly_sve_f32.h" static const struct data { float32_t poly[5]; float32_t pi, pi_over_2; } data = { /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on [ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */ .poly = { 0x1.55555ep-3, 0x1.33261ap-4, 0x1.70d7dcp-5, 0x1.b059dp-6, 0x1.3af7d8p-5, }, .pi = 0x1.921fb6p+1f, .pi_over_2 = 0x1.921fb6p+0f, }; /* Single-precision SVE implementation of vector acos(x). For |x| in [0, 0.5], use order 4 polynomial P such that the final approximation of asin is an odd polynomial: acos(x) ~ pi/2 - (x + x^3 P(x^2)). The largest observed error in this region is 1.16 ulps, _ZGVsMxv_acosf(0x1.ffbeccp-2) got 0x1.0c27f8p+0 want 0x1.0c27f6p+0. For |x| in [0.5, 1.0], use same approximation with a change of variable acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z). The largest observed error in this region is 1.32 ulps, _ZGVsMxv_acosf (0x1.15ba56p-1) got 0x1.feb33p-1 want 0x1.feb32ep-1. */ svfloat32_t SV_NAME_F1 (acos) (svfloat32_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), 0x80000000); svfloat32_t ax = svabs_x (pg, x); svbool_t a_gt_half = svacgt (pg, x, 0.5); /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with z2 = x ^ 2 and z = |x| , if |x| < 0.5 z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */ svfloat32_t z2 = svsel (a_gt_half, svmls_x (pg, sv_f32 (0.5), ax, 0.5), svmul_x (pg, x, x)); svfloat32_t z = svsqrt_m (ax, a_gt_half, z2); /* Use a single polynomial approximation P for both intervals. */ svfloat32_t p = sv_horner_4_f32_x (pg, z2, d->poly); /* Finalize polynomial: z + z * z2 * P(z2). */ p = svmla_x (pg, z, svmul_x (pg, z, z2), p); /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5 = 2 Q(|x|) , for 0.5 < x < 1.0 = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */ svfloat32_t y = svreinterpret_f32 (svorr_x (pg, svreinterpret_u32 (p), sign)); svbool_t is_neg = svcmplt (pg, x, 0.0); svfloat32_t off = svdup_f32_z (is_neg, d->pi); svfloat32_t mul = svsel (a_gt_half, sv_f32 (2.0), sv_f32 (-1.0)); svfloat32_t add = svsel (a_gt_half, off, sv_f32 (d->pi_over_2)); return svmla_x (pg, add, mul, y); }