/*- * Copyright (c) 1983, 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/param.h> #include <sys/time.h> #include <sys/gmon.h> #include <sys/gmon_out.h> #include <sys/uio.h> #include <errno.h> #include <stdio.h> #include <fcntl.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> extern int __profile_frequency __P ((void)); struct __bb *__bb_head; /* Head of basic-block list or NULL. */ struct gmonparam _gmonparam = { GMON_PROF_OFF }; /* * See profil(2) where this is described: */ static int s_scale; #define SCALE_1_TO_1 0x10000L #define ERR(s) __write(2, s, sizeof(s) - 1) void moncontrol __P ((int mode)); void __moncontrol __P ((int mode)); static void write_hist __P ((int fd)) internal_function; static void write_call_graph __P ((int fd)) internal_function; static void write_bb_counts __P ((int fd)) internal_function; /* * Control profiling * profiling is what mcount checks to see if * all the data structures are ready. */ void __moncontrol (mode) int mode; { struct gmonparam *p = &_gmonparam; /* Don't change the state if we ran into an error. */ if (p->state == GMON_PROF_ERROR) return; if (mode) { /* start */ __profil((void *) p->kcount, p->kcountsize, p->lowpc, s_scale); p->state = GMON_PROF_ON; } else { /* stop */ __profil(NULL, 0, 0, 0); p->state = GMON_PROF_OFF; } } void __monstartup (lowpc, highpc) u_long lowpc; u_long highpc; { register int o; char *cp; struct gmonparam *p = &_gmonparam; /* * round lowpc and highpc to multiples of the density we're using * so the rest of the scaling (here and in gprof) stays in ints. */ p->lowpc = ROUNDDOWN(lowpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->highpc = ROUNDUP(highpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->textsize = p->highpc - p->lowpc; p->kcountsize = p->textsize / HISTFRACTION; p->hashfraction = HASHFRACTION; p->log_hashfraction = -1; /* The following test must be kept in sync with the corresponding test in mcount.c. */ if ((HASHFRACTION & (HASHFRACTION - 1)) == 0) { /* if HASHFRACTION is a power of two, mcount can use shifting instead of integer division. Precompute shift amount. */ p->log_hashfraction = ffs(p->hashfraction * sizeof(*p->froms)) - 1; } p->fromssize = p->textsize / HASHFRACTION; p->tolimit = p->textsize * ARCDENSITY / 100; if (p->tolimit < MINARCS) p->tolimit = MINARCS; else if (p->tolimit > MAXARCS) p->tolimit = MAXARCS; p->tossize = p->tolimit * sizeof(struct tostruct); cp = calloc (p->kcountsize + p->fromssize + p->tossize, 1); if (! cp) { ERR("monstartup: out of memory\n"); p->tos = NULL; p->state = GMON_PROF_ERROR; return; } p->tos = (struct tostruct *)cp; cp += p->tossize; p->kcount = (u_short *)cp; cp += p->kcountsize; p->froms = (u_short *)cp; p->tos[0].link = 0; o = p->highpc - p->lowpc; if (p->kcountsize < (u_long) o) { #ifndef hp300 s_scale = ((float)p->kcountsize / o ) * SCALE_1_TO_1; #else /* avoid floating point operations */ int quot = o / p->kcountsize; if (quot >= 0x10000) s_scale = 1; else if (quot >= 0x100) s_scale = 0x10000 / quot; else if (o >= 0x800000) s_scale = 0x1000000 / (o / (p->kcountsize >> 8)); else s_scale = 0x1000000 / ((o << 8) / p->kcountsize); #endif } else s_scale = SCALE_1_TO_1; __moncontrol(1); } weak_alias(__monstartup, monstartup) static void internal_function write_hist (fd) int fd; { u_char tag = GMON_TAG_TIME_HIST; struct gmon_hist_hdr thdr __attribute__ ((aligned (__alignof__ (char *)))); if (_gmonparam.kcountsize > 0) { struct iovec iov[3] = { { &tag, sizeof (tag) }, { &thdr, sizeof (struct gmon_hist_hdr) }, { _gmonparam.kcount, _gmonparam.kcountsize } }; *(char **) thdr.low_pc = (char *) _gmonparam.lowpc; *(char **) thdr.high_pc = (char *) _gmonparam.highpc; *(int32_t *) thdr.hist_size = (_gmonparam.kcountsize / sizeof (HISTCOUNTER)); *(int32_t *) thdr.prof_rate = __profile_frequency (); strncpy (thdr.dimen, "seconds", sizeof (thdr.dimen)); thdr.dimen_abbrev = 's'; __writev (fd, iov, 3); } } static void internal_function write_call_graph (fd) int fd; { #define NARCS_PER_WRITEV 32 u_char tag = GMON_TAG_CG_ARC; struct gmon_cg_arc_record raw_arc[NARCS_PER_WRITEV] __attribute__ ((aligned (__alignof__ (char*)))); int from_index, to_index, from_len; u_long frompc; struct iovec iov[2 * NARCS_PER_WRITEV]; int nfilled; for (nfilled = 0; nfilled < NARCS_PER_WRITEV; ++nfilled) { iov[2 * nfilled].iov_base = &tag; iov[2 * nfilled].iov_len = sizeof (tag); iov[2 * nfilled + 1].iov_base = &raw_arc[nfilled]; iov[2 * nfilled + 1].iov_len = sizeof (struct gmon_cg_arc_record); } nfilled = 0; from_len = _gmonparam.fromssize / sizeof (*_gmonparam.froms); for (from_index = 0; from_index < from_len; ++from_index) { if (_gmonparam.froms[from_index] == 0) continue; frompc = _gmonparam.lowpc; frompc += (from_index * _gmonparam.hashfraction * sizeof (*_gmonparam.froms)); for (to_index = _gmonparam.froms[from_index]; to_index != 0; to_index = _gmonparam.tos[to_index].link) { *(char **) raw_arc[nfilled].from_pc = (char *) frompc; *(char **) raw_arc[nfilled].self_pc = (char *)_gmonparam.tos[to_index].selfpc; *(int *) raw_arc[nfilled].count = _gmonparam.tos[to_index].count; if (++nfilled == NARCS_PER_WRITEV) { __writev (fd, iov, 2 * nfilled); nfilled = 0; } } } if (nfilled > 0) __writev (fd, iov, 2 * nfilled); } static void internal_function write_bb_counts (fd) int fd; { struct __bb *grp; u_char tag = GMON_TAG_BB_COUNT; size_t ncounts; size_t i; struct iovec bbhead[2] = { { &tag, sizeof (tag) }, { &ncounts, sizeof (ncounts) } }; struct iovec bbbody[8]; size_t nfilled; for (i = 0; i < (sizeof (bbbody) / sizeof (bbbody[0])); i += 2) { bbbody[i].iov_len = sizeof (grp->addresses[0]); bbbody[i + 1].iov_len = sizeof (grp->counts[0]); } /* Write each group of basic-block info (all basic-blocks in a compilation unit form a single group). */ for (grp = __bb_head; grp; grp = grp->next) { ncounts = grp->ncounts; __writev (fd, bbhead, 2); for (nfilled = i = 0; i < ncounts; ++i) { if (nfilled > (sizeof (bbbody) / sizeof (bbbody[0])) - 2) { __writev (fd, bbbody, nfilled); nfilled = 0; } bbbody[nfilled++].iov_base = (char *) &grp->addresses[i]; bbbody[nfilled++].iov_base = &grp->counts[i]; } if (nfilled > 0) __writev (fd, bbbody, nfilled); } } static void write_gmon (void) { struct gmon_hdr ghdr __attribute__ ((aligned (__alignof__ (int)))); int fd = -1; char *env; env = getenv ("GMON_OUT_PREFIX"); if (env != NULL && !__libc_enable_secure) { size_t len = strlen (env); char buf[len + 20]; sprintf (buf, "%s.%u", env, __getpid ()); fd = __open (buf, O_CREAT|O_TRUNC|O_WRONLY, 0666); } if (fd == -1) { fd = __open ("gmon.out", O_CREAT|O_TRUNC|O_WRONLY, 0666); if (fd < 0) { char buf[300]; int errnum = errno; fprintf (stderr, "_mcleanup: gmon.out: %s\n", __strerror_r (errnum, buf, sizeof buf)); return; } } /* write gmon.out header: */ memset (&ghdr, '\0', sizeof (struct gmon_hdr)); memcpy (&ghdr.cookie[0], GMON_MAGIC, sizeof (ghdr.cookie)); *(int32_t *) ghdr.version = GMON_VERSION; __write (fd, &ghdr, sizeof (struct gmon_hdr)); /* write PC histogram: */ write_hist (fd); /* write call-graph: */ write_call_graph (fd); /* write basic-block execution counts: */ write_bb_counts (fd); __close (fd); } void __write_profiling (void) { int save = _gmonparam.state; _gmonparam.state = GMON_PROF_OFF; if (save == GMON_PROF_ON) write_gmon (); _gmonparam.state = save; } weak_alias (__write_profiling, write_profiling) void _mcleanup (void) { __moncontrol (0); if (_gmonparam.state != GMON_PROF_ERROR) write_gmon (); /* free the memory. */ if (_gmonparam.tos != NULL) free (_gmonparam.tos); }