/* Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * ISO C 9X Standard: 7.9 Type-generic math <tgmath.h> */ #ifndef _TGMATH_H #define _TGMATH_H 1 /* Include the needed headers. */ #include <math.h> #include <complex.h> /* Since `complex' is currently not really implemented in most C compilers and if it is implemented, the implementations differ. This makes it quite difficult to write a generic implementation of this header. We do not try this for now and instead concentrate only on GNU CC. Once we have more information support for other compilers might follow. */ #if defined __GNUC__ && (__GNUC__ > 2 || __GNUC__ == 2 && __GNUC_MINOR__ >= 7) /* We have two kinds of generic macros: to support functions which are only defined on real valued parameters and those which are defined for complex functions as well. */ # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \ (__extension__ ({ __typeof__ (Val) __tgmres; \ if (sizeof (Val) == sizeof (double)) \ __tgmres = Fct (Val); \ else if (sizeof (Val) == sizeof (float)) \ __tgmres = Fct##f (Val); \ else \ __tgmres = Fct##l (Val); \ __tgmres; })) # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ (__extension__ ({ __typeof__ (Val1) __tgmres; \ if (sizeof (Val1) == sizeof (double)) \ __tgmres = Fct (Val1, Val2); \ else if (sizeof (Val1) == sizeof (float)) \ __tgmres = Fct##f (Val1, Val2); \ else \ __tgmres = Fct##l (Val1, Val2); \ __tgmres; })) # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ (__extension__ ({ __typeof__ ((Val1) + (Val2)) __tgmres; \ if (sizeof (Val1) > sizeof (double) \ || sizeof (Val2) > sizeof (double)) \ __tgmres = Fct##l (Val1, Val2); \ else if (sizeof (Val1) == sizeof (double) \ || sizeof (Val2) == sizeof (double)) \ __tgmres = Fct (Val1, Val2); \ else \ __tgmres = Fct (Val1, Val2); \ __tgmres; })) # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ (__extension__ ({ __typeof__ ((Val1) + (Val2)) __tgmres; \ if (sizeof (Val1) > sizeof (double) \ || sizeof (Val2) > sizeof (double)) \ __tgmres = Fct##l (Val1, Val2, Val3); \ else if (sizeof (Val1) == sizeof (double) \ || sizeof (Val2) == sizeof (double)) \ __tgmres = Fct (Val1, Val2, Val3); \ else \ __tgmres = Fct (Val1, Val2, Val3); \ __tgmres; })) # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ (__extension__ ({ __typeof__ ((Val1) + (Val2) + (Val3)) __tgmres; \ if (sizeof (Val1) > sizeof (double) \ || sizeof (Val2) > sizeof (double) \ || sizeof (Val3) > sizeof (double)) \ __tgmres = Fct##l (Val1, Val2, Val3); \ else if (sizeof (Val1) == sizeof (double) \ || sizeof (Val2) == sizeof (double) \ || sizeof (Val3) == sizeof (double)) \ __tgmres = Fct (Val1, Val2, Val3); \ else \ __tgmres = Fct (Val1, Val2, Val3); \ __tgmres; })) /* XXX This definition has to be changed as soon as the compiler understands the imaginary keyword. */ # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ (__extension__ ({ __typeof__ (Val) __tgmres; \ if (sizeof (__real__ (Val)) > sizeof (double)) \ { \ if (sizeof (__real__ (Val)) == sizeof (Val)) \ __tgmres = Fct##l (Val); \ else \ __tgmres = Cfct##l (Val); \ } \ else if (sizeof (__real__ (Val)) == sizeof (double)) \ { \ if (sizeof (__real__ (Val)) == sizeof (Val)) \ __tgmres = Fct (Val); \ else \ __tgmres = Cfct (Val); \ } \ else \ { \ if (sizeof (__real__ (Val)) == sizeof (Val)) \ __tgmres = Fct##f (Val); \ else \ __tgmres = Cfct##f (Val); \ } \ __tgmres; })) /* XXX This definition has to be changed as soon as the compiler understands the imaginary keyword. */ # define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \ (__extension__ ({ __typeof__ (Val) __tgmres; \ if (sizeof (Val) == sizeof (__complex__ double)) \ __tgmres = Fct (Val); \ else if (sizeof (Val) == sizeof (__complex__ float)) \ __tgmres = Fct##f (Val); \ else \ __tgmres = Fct##l (Val); \ __tgmres; })) /* XXX This definition has to be changed as soon as the compiler understands the imaginary keyword. */ # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ (__extension__ ({ __typeof__ ((Val1) + (Val2)) __tgmres; \ if (sizeof (__real__ (Val1)) > sizeof (double) \ || sizeof (__real__ (Val2)) > sizeof (double)) \ { \ if (sizeof (__real__ (Val1)) == sizeof (Val1) \ && sizeof (__real__ (Val2)) == sizeof (Val2)) \ __tgmres = Fct##l (Val1, Val2); \ else \ __tgmres = Cfct##l (Val1, Val2); \ } \ else if (sizeof (__real__ (Val1)) == sizeof (double) \ || sizeof (__real__ (Val2)) == sizeof(double))\ { \ if (sizeof (__real__ (Val1)) == sizeof (Val1) \ && sizeof (__real__ (Val2)) == sizeof (Val2)) \ __tgmres = Fct (Val1, Val2); \ else \ __tgmres = Cfct (Val1, Val2); \ } \ else \ { \ if (sizeof (__real__ (Val1)) == sizeof (Val1) \ && sizeof (__real__ (Val2)) == sizeof (Val2)) \ __tgmres = Fct##f (Val1, Val2); \ else \ __tgmres = Cfct##f (Val1, Val2); \ } \ __tgmres; })) #else # error "Unsupported compiler; you cannot use <tgmath.h>" #endif /* Unary functions defined for real and complex values. */ /* Trigonometric functions. */ /* Arc cosine of X. */ #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) /* Arc sine of X. */ #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) /* Arc tangent of X. */ #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) /* Arc tangent of Y/X. */ #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2) /* Cosine of X. */ #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) /* Sine of X. */ #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) /* Tangent of X. */ #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan) /* Hyperbolic functions. */ /* Hyperbolic arc cosine of X. */ #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) /* Hyperbolic arc sine of X. */ #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) /* Hyperbolic arc tangent of X. */ #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh) /* Hyperbolic cosine of X. */ #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) /* Hyperbolic sine of X. */ #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) /* Hyperbolic tangent of X. */ #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh) /* Exponential and logarithmic functions. */ /* Exponential function of X. */ #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp) /* Break VALUE into a normalized fraction and an integral power of 2. */ #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp) /* X times (two to the EXP power). */ #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp) /* Natural logarithm of X. */ #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog) /* Base-ten logarithm of X. */ #ifdef __USE_GNU # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10) #else # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) #endif /* Return exp(X) - 1. */ #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1) /* Return log(1 + X). */ #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p) /* Return the base 2 signed integral exponent of X. */ #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb) /* Compute base-2 exponential of X. */ #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2) /* Compute base-2 logarithm of X. */ #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2) /* Power functions. */ /* Return X to the Y power. */ #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow) /* Return the square root of X. */ #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt) /* Return `sqrt(X*X + Y*Y)'. */ #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot) /* Return the cube root of X. */ #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt) /* Nearest integer, absolute value, and remainder functions. */ /* Smallest integral value not less than X. */ #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil) /* Absolute value of X. */ #define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs) /* Largest integer not greater than X. */ #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor) /* Floating-point modulo remainder of X/Y. */ #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod) /* Round X to integral valuein floating-point format using current rounding direction, but do not raise inexact exception. */ #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint) /* Round X to nearest integral value, rounding halfway cases away from zero. */ #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round) /* Round X to the integral value in floating-point format nearest but not larger in magnitude. */ #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc) /* Compute remainder of X and Y and put in *QUO a value with sign of x/y and magnitude congruent `mod 2^n' to the magnitude of the integral quotient x/y, with n >= 3. */ #define remquo(Val1, Val2, Val3) \ __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo) /* Round X to nearest integral value according to current rounding direction. */ #define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint) #define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint) /* Round X to nearest integral value, rounding halfway cases away from zero. */ #define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround) #define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround) /* Return X with its signed changed to Y's. */ #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign) /* Error and gamma functions. */ #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) #define gamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, gamma) #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma) /* Return the integer nearest X in the direction of the prevailing rounding mode. */ #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint) /* Return X + epsilon if X < Y, X - epsilon if X > Y. */ #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) #define nexttoward(Val1, Val2) \ __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward) /* Return the remainder of integer divison X / Y with infinite precision. */ #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder) /* Return X times (2 to the Nth power). */ #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED #define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb) #endif /* Return X times (2 to the Nth power). */ #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn) /* Return X times (2 to the Nth power). */ #define scalbln(Val1, Val2) \ __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln) /* Return the binary exponent of X, which must be nonzero. */ #define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb) /* Return positive difference between X and Y. */ #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim) /* Return maximum numeric value from X and Y. */ #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax) /* Return minimum numeric value from X and Y. */ #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin) /* Multiply-add function computed as a ternary operation. */ #define fma(Vat1, Val2, Val3) \ __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma) /* Absolute value, conjugates, and projection. */ /* Argument value of Z. */ #define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg) /* Complex conjugate of Z. */ #define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj) /* Projection of Z onto the Riemann sphere. */ #define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj) /* Decomposing complex values. */ /* Imaginary part of Z. */ #define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag) /* Real part of Z. */ #define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal) #endif /* tgmath.h */