/* s_atanl.c * * Inverse circular tangent for 128-bit long double precision * (arctangent) * * * * SYNOPSIS: * * long double x, y, atanl(); * * y = atanl( x ); * * * * DESCRIPTION: * * Returns radian angle between -pi/2 and +pi/2 whose tangent is x. * * The function uses a rational approximation of the form * t + t^3 P(t^2)/Q(t^2), optimized for |t| < 0.09375. * * The argument is reduced using the identity * arctan x - arctan u = arctan ((x-u)/(1 + ux)) * and an 83-entry lookup table for arctan u, with u = 0, 1/8, ..., 10.25. * Use of the table improves the execution speed of the routine. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -19, 19 4e5 1.7e-34 5.4e-35 * * * WARNING: * * This program uses integer operations on bit fields of floating-point * numbers. It does not work with data structures other than the * structure assumed. * */ /* Copyright 2001 by Stephen L. Moshier This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ #include #include #include /* arctan(k/8), k = 0, ..., 82 */ static const long double atantbl[84] = { 0.0000000000000000000000000000000000000000E0L, 1.2435499454676143503135484916387102557317E-1L, /* arctan(0.125) */ 2.4497866312686415417208248121127581091414E-1L, 3.5877067027057222039592006392646049977698E-1L, 4.6364760900080611621425623146121440202854E-1L, 5.5859931534356243597150821640166127034645E-1L, 6.4350110879328438680280922871732263804151E-1L, 7.1882999962162450541701415152590465395142E-1L, 7.8539816339744830961566084581987572104929E-1L, 8.4415398611317100251784414827164750652594E-1L, 8.9605538457134395617480071802993782702458E-1L, 9.4200004037946366473793717053459358607166E-1L, 9.8279372324732906798571061101466601449688E-1L, 1.0191413442663497346383429170230636487744E0L, 1.0516502125483736674598673120862998296302E0L, 1.0808390005411683108871567292171998202703E0L, 1.1071487177940905030170654601785370400700E0L, 1.1309537439791604464709335155363278047493E0L, 1.1525719972156675180401498626127513797495E0L, 1.1722738811284763866005949441337046149712E0L, 1.1902899496825317329277337748293183376012E0L, 1.2068173702852525303955115800565576303133E0L, 1.2220253232109896370417417439225704908830E0L, 1.2360594894780819419094519711090786987027E0L, 1.2490457723982544258299170772810901230778E0L, 1.2610933822524404193139408812473357720101E0L, 1.2722973952087173412961937498224804940684E0L, 1.2827408797442707473628852511364955306249E0L, 1.2924966677897852679030914214070816845853E0L, 1.3016288340091961438047858503666855921414E0L, 1.3101939350475556342564376891719053122733E0L, 1.3182420510168370498593302023271362531155E0L, 1.3258176636680324650592392104284756311844E0L, 1.3329603993374458675538498697331558093700E0L, 1.3397056595989995393283037525895557411039E0L, 1.3460851583802539310489409282517796256512E0L, 1.3521273809209546571891479413898128509842E0L, 1.3578579772154994751124898859640585287459E0L, 1.3633001003596939542892985278250991189943E0L, 1.3684746984165928776366381936948529556191E0L, 1.3734007669450158608612719264449611486510E0L, 1.3780955681325110444536609641291551522494E0L, 1.3825748214901258580599674177685685125566E0L, 1.3868528702577214543289381097042486034883E0L, 1.3909428270024183486427686943836432060856E0L, 1.3948567013423687823948122092044222644895E0L, 1.3986055122719575950126700816114282335732E0L, 1.4021993871854670105330304794336492676944E0L, 1.4056476493802697809521934019958079881002E0L, 1.4089588955564736949699075250792569287156E0L, 1.4121410646084952153676136718584891599630E0L, 1.4152014988178669079462550975833894394929E0L, 1.4181469983996314594038603039700989523716E0L, 1.4209838702219992566633046424614466661176E0L, 1.4237179714064941189018190466107297503086E0L, 1.4263547484202526397918060597281265695725E0L, 1.4288992721907326964184700745371983590908E0L, 1.4313562697035588982240194668401779312122E0L, 1.4337301524847089866404719096698873648610E0L, 1.4360250423171655234964275337155008780675E0L, 1.4382447944982225979614042479354815855386E0L, 1.4403930189057632173997301031392126865694E0L, 1.4424730991091018200252920599377292525125E0L, 1.4444882097316563655148453598508037025938E0L, 1.4464413322481351841999668424758804165254E0L, 1.4483352693775551917970437843145232637695E0L, 1.4501726582147939000905940595923466567576E0L, 1.4519559822271314199339700039142990228105E0L, 1.4536875822280323362423034480994649820285E0L, 1.4553696664279718992423082296859928222270E0L, 1.4570043196511885530074841089245667532358E0L, 1.4585935117976422128825857356750737658039E0L, 1.4601391056210009726721818194296893361233E0L, 1.4616428638860188872060496086383008594310E0L, 1.4631064559620759326975975316301202111560E0L, 1.4645314639038178118428450961503371619177E0L, 1.4659193880646627234129855241049975398470E0L, 1.4672716522843522691530527207287398276197E0L, 1.4685896086876430842559640450619880951144E0L, 1.4698745421276027686510391411132998919794E0L, 1.4711276743037345918528755717617308518553E0L, 1.4723501675822635384916444186631899205983E0L, 1.4735431285433308455179928682541563973416E0L, /* arctan(10.25) */ 1.5707963267948966192313216916397514420986E0L /* pi/2 */ }; /* arctan t = t + t^3 p(t^2) / q(t^2) |t| <= 0.09375 peak relative error 5.3e-37 */ static const long double p0 = -4.283708356338736809269381409828726405572E1L, p1 = -8.636132499244548540964557273544599863825E1L, p2 = -5.713554848244551350855604111031839613216E1L, p3 = -1.371405711877433266573835355036413750118E1L, p4 = -8.638214309119210906997318946650189640184E-1L, q0 = 1.285112506901621042780814422948906537959E2L, q1 = 3.361907253914337187957855834229672347089E2L, q2 = 3.180448303864130128268191635189365331680E2L, q3 = 1.307244136980865800160844625025280344686E2L, q4 = 2.173623741810414221251136181221172551416E1L; /* q5 = 1.000000000000000000000000000000000000000E0 */ static const long double huge = 1.0e4930L; long double __atanl (long double x) { int k, sign; long double t, u, p, q; ieee854_long_double_shape_type s; s.value = x; k = s.parts32.w0; if (k & 0x80000000) sign = 1; else sign = 0; /* Check for IEEE special cases. */ k &= 0x7fffffff; if (k >= 0x7fff0000) { /* NaN. */ if ((k & 0xffff) | s.parts32.w1 | s.parts32.w2 | s.parts32.w3) return (x + x); /* Infinity. */ if (sign) return -atantbl[83]; else return atantbl[83]; } if (k <= 0x3fc50000) /* |x| < 2**-58 */ { math_check_force_underflow (x); /* Raise inexact. */ if (huge + x > 0.0) return x; } if (k >= 0x40720000) /* |x| > 2**115 */ { /* Saturate result to {-,+}pi/2 */ if (sign) return -atantbl[83]; else return atantbl[83]; } if (sign) x = -x; if (k >= 0x40024800) /* 10.25 */ { k = 83; t = -1.0/x; } else { /* Index of nearest table element. Roundoff to integer is asymmetrical to avoid cancellation when t < 0 (cf. fdlibm). */ k = 8.0 * x + 0.25; u = 0.125L * k; /* Small arctan argument. */ t = (x - u) / (1.0 + x * u); } /* Arctan of small argument t. */ u = t * t; p = ((((p4 * u) + p3) * u + p2) * u + p1) * u + p0; q = ((((u + q4) * u + q3) * u + q2) * u + q1) * u + q0; u = t * u * p / q + t; /* arctan x = arctan u + arctan t */ u = atantbl[k] + u; if (sign) return (-u); else return u; } weak_alias (__atanl, atanl)