/* Helper macros for functions returning a narrower type. Copyright (C) 2018-2022 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <https://www.gnu.org/licenses/>. */ #ifndef _MATH_NARROW_H #define _MATH_NARROW_H 1 #include <bits/floatn.h> #include <bits/long-double.h> #include <errno.h> #include <fenv.h> #include <ieee754.h> #include <math-barriers.h> #include <math_private.h> #include <fenv_private.h> #include <math-narrow-alias.h> #include <stdbool.h> /* Carry out a computation using round-to-odd. The computation is EXPR; the union type in which to store the result is UNION and the subfield of the "ieee" field of that union with the low part of the mantissa is MANTISSA; SUFFIX is the suffix for both underlying libm functions for the argument type (for computations where a libm function rather than a C operator is used when argument and result types are the same) and the libc_fe* macros to ensure that the correct rounding mode is used, for platforms with multiple rounding modes where those macros set only the relevant mode. CLEAR_UNDERFLOW indicates whether underflow exceptions must be cleared (in the case where a round-toward-zero underflow might not indicate an underflow after narrowing, when that narrowing only reduces precision not exponent range and the architecture uses before-rounding tininess detection). This macro does not work correctly if the sign of an exact zero result depends on the rounding mode, so that case must be checked for separately. */ #define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW) \ ({ \ fenv_t env; \ UNION u; \ \ libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \ u.d = (EXPR); \ math_force_eval (u.d); \ if (CLEAR_UNDERFLOW) \ feclearexcept (FE_UNDERFLOW); \ u.ieee.MANTISSA \ |= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \ \ u.d; \ }) /* Check for error conditions from a narrowing add function returning RET with arguments X and Y and set errno as needed. Overflow and underflow can occur for finite arguments and a domain error for infinite ones. */ #define CHECK_NARROW_ADD(RET, X, Y) \ do \ { \ if (!isfinite (RET)) \ { \ if (isnan (RET)) \ { \ if (!isnan (X) && !isnan (Y)) \ __set_errno (EDOM); \ } \ else if (isfinite (X) && isfinite (Y)) \ __set_errno (ERANGE); \ } \ else if ((RET) == 0 && (X) != -(Y)) \ __set_errno (ERANGE); \ } \ while (0) /* Implement narrowing add using round-to-odd. The arguments are X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are as for ROUND_TO_ODD. */ #define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ do \ { \ TYPE ret; \ \ /* Ensure a zero result is computed in the original rounding \ mode. */ \ if ((X) == -(Y)) \ ret = (TYPE) ((X) + (Y)); \ else \ ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \ UNION, SUFFIX, MANTISSA, false); \ \ CHECK_NARROW_ADD (ret, (X), (Y)); \ return ret; \ } \ while (0) /* Implement a narrowing add function that is not actually narrowing or where no attempt is made to be correctly rounding (the latter only applies to IBM long double). The arguments are X and Y and the return type is TYPE. */ #define NARROW_ADD_TRIVIAL(X, Y, TYPE) \ do \ { \ TYPE ret; \ \ ret = (TYPE) ((X) + (Y)); \ CHECK_NARROW_ADD (ret, (X), (Y)); \ return ret; \ } \ while (0) /* Check for error conditions from a narrowing subtract function returning RET with arguments X and Y and set errno as needed. Overflow and underflow can occur for finite arguments and a domain error for infinite ones. */ #define CHECK_NARROW_SUB(RET, X, Y) \ do \ { \ if (!isfinite (RET)) \ { \ if (isnan (RET)) \ { \ if (!isnan (X) && !isnan (Y)) \ __set_errno (EDOM); \ } \ else if (isfinite (X) && isfinite (Y)) \ __set_errno (ERANGE); \ } \ else if ((RET) == 0 && (X) != (Y)) \ __set_errno (ERANGE); \ } \ while (0) /* Implement narrowing subtract using round-to-odd. The arguments are X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are as for ROUND_TO_ODD. */ #define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ do \ { \ TYPE ret; \ \ /* Ensure a zero result is computed in the original rounding \ mode. */ \ if ((X) == (Y)) \ ret = (TYPE) ((X) - (Y)); \ else \ ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \ UNION, SUFFIX, MANTISSA, false); \ \ CHECK_NARROW_SUB (ret, (X), (Y)); \ return ret; \ } \ while (0) /* Implement a narrowing subtract function that is not actually narrowing or where no attempt is made to be correctly rounding (the latter only applies to IBM long double). The arguments are X and Y and the return type is TYPE. */ #define NARROW_SUB_TRIVIAL(X, Y, TYPE) \ do \ { \ TYPE ret; \ \ ret = (TYPE) ((X) - (Y)); \ CHECK_NARROW_SUB (ret, (X), (Y)); \ return ret; \ } \ while (0) /* Check for error conditions from a narrowing multiply function returning RET with arguments X and Y and set errno as needed. Overflow and underflow can occur for finite arguments and a domain error for Inf * 0. */ #define CHECK_NARROW_MUL(RET, X, Y) \ do \ { \ if (!isfinite (RET)) \ { \ if (isnan (RET)) \ { \ if (!isnan (X) && !isnan (Y)) \ __set_errno (EDOM); \ } \ else if (isfinite (X) && isfinite (Y)) \ __set_errno (ERANGE); \ } \ else if ((RET) == 0 && (X) != 0 && (Y) != 0) \ __set_errno (ERANGE); \ } \ while (0) /* Implement narrowing multiply using round-to-odd. The arguments are X and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ #define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \ CLEAR_UNDERFLOW) \ do \ { \ TYPE ret; \ \ ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \ UNION, SUFFIX, MANTISSA, \ CLEAR_UNDERFLOW); \ \ CHECK_NARROW_MUL (ret, (X), (Y)); \ return ret; \ } \ while (0) /* Implement a narrowing multiply function that is not actually narrowing or where no attempt is made to be correctly rounding (the latter only applies to IBM long double). The arguments are X and Y and the return type is TYPE. */ #define NARROW_MUL_TRIVIAL(X, Y, TYPE) \ do \ { \ TYPE ret; \ \ ret = (TYPE) ((X) * (Y)); \ CHECK_NARROW_MUL (ret, (X), (Y)); \ return ret; \ } \ while (0) /* Check for error conditions from a narrowing divide function returning RET with arguments X and Y and set errno as needed. Overflow, underflow and divide-by-zero can occur for finite arguments and a domain error for Inf / Inf and 0 / 0. */ #define CHECK_NARROW_DIV(RET, X, Y) \ do \ { \ if (!isfinite (RET)) \ { \ if (isnan (RET)) \ { \ if (!isnan (X) && !isnan (Y)) \ __set_errno (EDOM); \ } \ else if (isfinite (X)) \ __set_errno (ERANGE); \ } \ else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \ __set_errno (ERANGE); \ } \ while (0) /* Implement narrowing divide using round-to-odd. The arguments are X and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ #define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \ CLEAR_UNDERFLOW) \ do \ { \ TYPE ret; \ \ ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \ UNION, SUFFIX, MANTISSA, \ CLEAR_UNDERFLOW); \ \ CHECK_NARROW_DIV (ret, (X), (Y)); \ return ret; \ } \ while (0) /* Implement a narrowing divide function that is not actually narrowing or where no attempt is made to be correctly rounding (the latter only applies to IBM long double). The arguments are X and Y and the return type is TYPE. */ #define NARROW_DIV_TRIVIAL(X, Y, TYPE) \ do \ { \ TYPE ret; \ \ ret = (TYPE) ((X) / (Y)); \ CHECK_NARROW_DIV (ret, (X), (Y)); \ return ret; \ } \ while (0) /* Check for error conditions from a narrowing square root function returning RET with argument X and set errno as needed. Overflow and underflow can occur for finite positive arguments and a domain error for negative arguments. */ #define CHECK_NARROW_SQRT(RET, X) \ do \ { \ if (!isfinite (RET)) \ { \ if (isnan (RET)) \ { \ if (!isnan (X)) \ __set_errno (EDOM); \ } \ else if (isfinite (X)) \ __set_errno (ERANGE); \ } \ else if ((RET) == 0 && (X) != 0) \ __set_errno (ERANGE); \ } \ while (0) /* Implement narrowing square root using round-to-odd. The argument is X, the return type is TYPE and UNION, MANTISSA and SUFFIX are as for ROUND_TO_ODD. */ #define NARROW_SQRT_ROUND_TO_ODD(X, TYPE, UNION, SUFFIX, MANTISSA) \ do \ { \ TYPE ret; \ \ ret = (TYPE) ROUND_TO_ODD (sqrt ## SUFFIX (math_opt_barrier (X)), \ UNION, SUFFIX, MANTISSA, false); \ \ CHECK_NARROW_SQRT (ret, (X)); \ return ret; \ } \ while (0) /* Implement a narrowing square root function where no attempt is made to be correctly rounding (this only applies to IBM long double; the case where the function is not actually narrowing is handled by aliasing other sqrt functions in libm, not using this macro). The argument is X and the return type is TYPE. */ #define NARROW_SQRT_TRIVIAL(X, TYPE, SUFFIX) \ do \ { \ TYPE ret; \ \ ret = (TYPE) (sqrt ## SUFFIX (X)); \ CHECK_NARROW_SQRT (ret, (X)); \ return ret; \ } \ while (0) /* Check for error conditions from a narrowing fused multiply-add function returning RET with arguments X, Y and Z and set errno as needed. Checking for error conditions for fma (either narrowing or not) and setting errno is not currently implemented. See bug 6801. */ #define CHECK_NARROW_FMA(RET, X, Y, Z) \ do \ { \ } \ while (0) /* Implement narrowing fused multiply-add using round-to-odd. The arguments are X, Y and Z, the return type is TYPE and UNION, MANTISSA, SUFFIX and CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ #define NARROW_FMA_ROUND_TO_ODD(X, Y, Z, TYPE, UNION, SUFFIX, MANTISSA, \ CLEAR_UNDERFLOW) \ do \ { \ typeof (X) tmp; \ TYPE ret; \ \ tmp = ROUND_TO_ODD (fma ## SUFFIX (math_opt_barrier (X), (Y), \ (Z)), \ UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW); \ /* If the round-to-odd result is zero, the result is an exact \ zero and must be recomputed in the original rounding mode. */ \ if (tmp == 0) \ ret = (TYPE) (math_opt_barrier (X) * (Y) + (Z)); \ else \ ret = (TYPE) tmp; \ \ CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \ return ret; \ } \ while (0) /* Implement a narrowing fused multiply-add function where no attempt is made to be correctly rounding (this only applies to IBM long double; the case where the function is not actually narrowing is handled by aliasing other fma functions in libm, not using this macro). The arguments are X, Y and Z and the return type is TYPE. */ #define NARROW_FMA_TRIVIAL(X, Y, Z, TYPE, SUFFIX) \ do \ { \ TYPE ret; \ \ ret = (TYPE) (fma ## SUFFIX ((X), (Y), (Z))); \ CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \ return ret; \ } \ while (0) #endif /* math-narrow.h. */