/* @(#)e_hypotl.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* __ieee754_hypotl(x,y) * * Method : * If (assume round-to-nearest) z=x*x+y*y * has error less than sqrtl(2)/2 ulp, than * sqrtl(z) has error less than 1 ulp (exercise). * * So, compute sqrtl(x*x+y*y) with some care as * follows to get the error below 1 ulp: * * Assume x>y>0; * (if possible, set rounding to round-to-nearest) * 1. if x > 2y use * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y * where x1 = x with lower 53 bits cleared, x2 = x-x1; else * 2. if x <= 2y use * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) * where t1 = 2x with lower 53 bits cleared, t2 = 2x-t1, * y1= y with lower 53 bits chopped, y2 = y-y1. * * NOTE: scaling may be necessary if some argument is too * large or too tiny * * Special cases: * hypotl(x,y) is INF if x or y is +INF or -INF; else * hypotl(x,y) is NAN if x or y is NAN. * * Accuracy: * hypotl(x,y) returns sqrtl(x^2+y^2) with error less * than 1 ulps (units in the last place) */ #include #include long double __ieee754_hypotl(long double x, long double y) { long double a,b,a1,a2,b1,b2,w,kld; int64_t j,k,ha,hb; double xhi, yhi, hi, lo; xhi = ldbl_high (x); EXTRACT_WORDS64 (ha, xhi); yhi = ldbl_high (y); EXTRACT_WORDS64 (hb, yhi); ha &= 0x7fffffffffffffffLL; hb &= 0x7fffffffffffffffLL; if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} a = fabsl(a); /* a <- |a| */ b = fabsl(b); /* b <- |b| */ if((ha-hb)>0x0780000000000000LL) {return a+b;} /* x/y > 2**120 */ k=0; kld = 1.0L; if(ha > 0x5f30000000000000LL) { /* a>2**500 */ if(ha >= 0x7ff0000000000000LL) { /* Inf or NaN */ w = a+b; /* for sNaN */ if (issignaling (a) || issignaling (b)) return w; if(ha == 0x7ff0000000000000LL) w = a; if(hb == 0x7ff0000000000000LL) w = b; return w; } /* scale a and b by 2**-600 */ a *= 0x1p-600L; b *= 0x1p-600L; k = 600; kld = 0x1p+600L; } else if(hb < 0x23d0000000000000LL) { /* b < 2**-450 */ if(hb <= 0x000fffffffffffffLL) { /* subnormal b or 0 */ if(hb==0) return a; a *= 0x1p+1022L; b *= 0x1p+1022L; k = -1022; kld = 0x1p-1022L; } else { /* scale a and b by 2^600 */ a *= 0x1p+600L; b *= 0x1p+600L; k = -600; kld = 0x1p-600L; } } /* medium size a and b */ w = a-b; if (w>b) { ldbl_unpack (a, &hi, &lo); a1 = hi; a2 = lo; /* a*a + b*b = (a1+a2)*a + b*b = a1*a + a2*a + b*b = a1*(a1+a2) + a2*a + b*b = a1*a1 + a1*a2 + a2*a + b*b = a1*a1 + a2*(a+a1) + b*b */ w = sqrtl(a1*a1-(b*(-b)-a2*(a+a1))); } else { a = a+a; ldbl_unpack (b, &hi, &lo); b1 = hi; b2 = lo; ldbl_unpack (a, &hi, &lo); a1 = hi; a2 = lo; /* a*a + b*b = a*a + (a-b)*(a-b) - (a-b)*(a-b) + b*b = a*a + w*w - (a*a - 2*a*b + b*b) + b*b = w*w + 2*a*b = w*w + (a1+a2)*b = w*w + a1*b + a2*b = w*w + a1*(b1+b2) + a2*b = w*w + a1*b1 + a1*b2 + a2*b */ w = sqrtl(a1*b1-(w*(-w)-(a1*b2+a2*b))); } if(k!=0) { w *= kld; math_check_force_underflow_nonneg (w); return w; } else return w; } strong_alias (__ieee754_hypotl, __hypotl_finite)