#!/usr/bin/python3
# Copyright (C) 2021-2023 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
#
# The GNU C Library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# The GNU C Library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with the GNU C Library; if not, see
# .
"""Benchmark program generator script
This script takes a function name as input and generates a program using
an libmvec input file located in the sysdeps/x86_64/fpu directory. The
name of the input file should be of the form libmvec-foo-inputs where
'foo' is the name of the function.
"""
from __future__ import print_function
import sys
import os
import itertools
import re
# Macro definitions for functions that take no arguments. For functions
# that take arguments, the STRUCT_TEMPLATE, ARGS_TEMPLATE and
# VARIANTS_TEMPLATE are used instead.
DEFINES_TEMPLATE = '''
#define CALL_BENCH_FUNC(v, i) %(func)s ()
#define NUM_VARIANTS (1)
#define NUM_SAMPLES(v) (1)
#define VARIANT(v) FUNCNAME "()"
'''
# Structures to store arguments for the function call. A function may
# have its inputs partitioned to represent distinct performance
# characteristics or distinct flavors of the function. Each such
# variant is represented by the _VARIANT structure. The ARGS structure
# represents a single set of arguments.
BENCH_VEC_TEMPLATE = '''
#define CALL_BENCH_FUNC(v, i) (__extension__ ({ \\
%(defs)s mx0 = %(func)s (%(func_args)s); \\
mx0; }))
'''
BENCH_SCALAR_TEMPLATE = '''
#define CALL_BENCH_FUNC(v, i) %(func)s (%(func_args)s)
'''
STRUCT_TEMPLATE = '''struct args
{
%(args)s
double timing;
};
struct _variants
{
const char *name;
int count;
struct args *in;
};
'''
# The actual input arguments.
ARGS_TEMPLATE = '''struct args in%(argnum)d[%(num_args)d] = {
%(args)s
};
'''
# The actual variants, along with macros defined to access the variants.
VARIANTS_TEMPLATE = '''struct _variants variants[%(num_variants)d] = {
%(variants)s
};
#define NUM_VARIANTS %(num_variants)d
#define NUM_SAMPLES(i) (variants[i].count)
#define VARIANT(i) (variants[i].name)
'''
# Epilogue for the generated source file.
EPILOGUE = '''
#define BENCH_FUNC(i, j) ({%(getret)s CALL_BENCH_FUNC (i, j);})
#define FUNCNAME "%(func)s"
#include '''
def gen_source(func_types, directives, all_vals):
"""Generate source for the function
Generate the C source for the function from the values and
directives.
Args:
func: The function name
directives: A dictionary of directives applicable to this function
all_vals: A dictionary input values
"""
# The includes go in first.
for header in directives['includes']:
print('#include <%s>' % header)
for header in directives['include-sources']:
print('#include "%s"' % header)
argtype_vtable = {
2: '128',
4: '256',
8: '512'
}
prefix_vtable = {
2: 'b',
4: 'c',
8: 'e'
}
# Get all the function properties
funcname_argtype = ''
float_flag = False
if func_types[1] == 'float':
float_flag = True
avx_flag = False
if func_types[3] == 'avx2':
avx_flag = True
funcname_stride = int(func_types[2][4:])
funcname_origin = func_types[-1]
if float_flag:
funcname_origin = funcname_origin[:-1]
if funcname_stride == 1:
# Prepare for scalar functions file generation
funcname_prefix = ''
funcname_prefix_1 = ''
funcname_argtype = 'double'
if float_flag:
funcname_argtype = 'float'
else:
# Prepare for libmvec functions file generation
funcname_prefix_1 = len(directives['args']) * 'v' + '_'
aligned_stride = funcname_stride
if float_flag:
aligned_stride /= 2
funcname_prefix = '_ZGV'
if (avx_flag and (aligned_stride == 4)):
funcname_prefix += 'd'
else:
funcname_prefix += prefix_vtable[aligned_stride]
funcname_prefix = funcname_prefix + 'N' + func_types[2][4:]
funcname_argtype = '__m' + argtype_vtable[aligned_stride]
if not float_flag:
funcname_argtype += 'd'
# Include x86intrin.h for vector functions
if not funcname_stride == 1:
print('#include ')
if (avx_flag and (aligned_stride == 4)):
# For bench-float-vlen8-avx2* and bench-double-vlen4-avx2*
print('#define REQUIRE_AVX2')
elif aligned_stride == 8:
# For bench-float-vlen16* and bench-double-vlen8*
print('#define REQUIRE_AVX512F')
elif aligned_stride == 4:
# For bench-float-vlen8* and bench-double-vlen4* without avx2
print('#define REQUIRE_AVX')
else:
print('#define FUNCTYPE %s' % funcname_argtype)
print('#define STRIDE %d ' % funcname_stride)
funcname = funcname_prefix + funcname_prefix_1 + funcname_origin
if float_flag:
funcname += 'f'
funcname_rettype = funcname_argtype
if directives['ret'] == '':
funcname_rettype = 'void'
funcname_inputtype = []
for arg, i in zip(directives['args'], itertools.count()):
funcname_inputtype.append(funcname_argtype)
if arg[0] == '<' and arg[-1] == '>':
pos = arg.rfind('*')
if pos == -1:
die('Output argument must be a pointer type')
funcname_inputtype[i] += ' *'
if not funcname_stride == 1:
if len(directives['args']) == 2:
print('extern %s %s (%s, %s);' % (funcname_rettype, funcname, funcname_inputtype[0], funcname_inputtype[1]))
elif len(directives['args']) == 3:
print('extern %s %s (%s, %s, %s);' % (funcname_rettype, funcname, funcname_inputtype[0], funcname_inputtype[1], funcname_inputtype[2]))
else:
print('extern %s %s (%s);' % (funcname_rettype, funcname, funcname_inputtype[0]))
# Print macros. This branches out to a separate routine if
# the function takes arguments.
if not directives['args']:
print(DEFINES_TEMPLATE % {'funcname': funcname})
outargs = []
else:
outargs = _print_arg_data(funcname, float_flag, funcname_argtype, funcname_stride, directives, all_vals)
# Print the output variable definitions if necessary.
for out in outargs:
print(out)
# If we have a return value from the function, make sure it is
# assigned to prevent the compiler from optimizing out the
# call.
getret = ''
if directives['ret']:
if funcname_argtype != '':
print('static %s volatile ret;' % funcname_argtype)
getret = 'ret ='
else:
print('static %s volatile ret;' % directives['ret'])
getret = 'ret ='
# Test initialization.
if directives['init']:
print('#define BENCH_INIT %s' % directives['init'])
print(EPILOGUE % {'getret': getret, 'func': funcname})
def _print_arg_data(func, float_flag, funcname_argtype, funcname_stride, directives, all_vals):
"""Print argument data
This is a helper function for gen_source that prints structure and
values for arguments and their variants and returns output arguments
if any are found.
Args:
func: Function name
float_flag: True if function is float type
funcname_argtype: Type for vector variants
funcname_stride: Vector Length
directives: A dictionary of directives applicable to this function
all_vals: A dictionary input values
Returns:
Returns a list of definitions for function arguments that act as
output parameters.
"""
# First, all of the definitions. We process writing of
# CALL_BENCH_FUNC, struct args and also the output arguments
# together in a single traversal of the arguments list.
func_args = []
_func_args = []
arg_struct = []
outargs = []
# Conversion function for each type
vtable = {
'__m128d': '_mm_loadu_pd',
'__m256d': '_mm256_loadu_pd',
'__m512d': '_mm512_loadu_pd',
'__m128': '_mm_loadu_ps',
'__m256': '_mm256_loadu_ps',
'__m512': '_mm512_loadu_ps',
'double': '',
'float': ''
}
# For double max_vlen=8, for float max_vlen=16.
if float_flag == True:
max_vlen = 16
else:
max_vlen = 8
for arg, i in zip(directives['args'], itertools.count()):
if arg[0] == '<' and arg[-1] == '>':
outargs.append('static %s out%d __attribute__((used));' % (funcname_argtype, i))
func_args.append('&out%d' % i)
_func_args.append('&out%d' % i)
else:
arg_struct.append(' %s arg%d[STRIDE];' % (arg, i))
func_args.append('%s (variants[v].in[i].arg%d)' %
(vtable[funcname_argtype], i))
_func_args.append('variants[v].in[i].arg%d[0]' % i)
if funcname_stride == 1:
print(BENCH_SCALAR_TEMPLATE % {'func': func,
'func_args': ', '.join(_func_args)})
elif directives['ret'] == '':
print(BENCH_SCALAR_TEMPLATE % {'func': func,
'func_args': ', '.join(func_args)})
else:
print(BENCH_VEC_TEMPLATE % {'func': func, 'func_args': ', '.join(func_args),
'defs': funcname_argtype})
print(STRUCT_TEMPLATE % {'args': '\n'.join(arg_struct)})
# Now print the values.
variants = []
for (k, _vals), i in zip(all_vals.items(), itertools.count()):
vals = []
temp_vals = []
j = 0
temp_j = 0
result_v = ['', '', '']
for _v in _vals:
nums = _v.split(',')
for l in range(0, len(nums)):
result_v[l] = result_v[l] + nums[l].strip() + ','
j += 1
temp_j += 1
if temp_j == funcname_stride:
final_result = ''
for l in range(0, len(nums)):
final_result = final_result + '{' + result_v[l][:-1] + '},'
temp_vals.append(final_result[:-1])
temp_j = 0
result_v = ['', '', '']
# Make sure amount of test data is multiple of max_vlen
# to keep data size same for all vector length.
if j == max_vlen:
vals.extend(temp_vals)
temp_vals = []
j = 0
out = [' {%s, 0},' % v for v in vals]
# Members for the variants structure list that we will
# print later.
variants.append(' {"%s", %d, in%d},' % (k, len(vals), i))
print(ARGS_TEMPLATE % {'argnum': i, 'num_args': len(vals),
'args': '\n'.join(out)})
# Print the variants and the last set of macros.
print(VARIANTS_TEMPLATE % {'num_variants': len(all_vals),
'variants': '\n'.join(variants)})
return outargs
def _process_directive(d_name, d_val, func_args):
"""Process a directive.
Evaluate the directive name and value passed and return the
processed value. This is a helper function for parse_file.
Args:
d_name: Name of the directive
d_val: The string value to process
Returns:
The processed value, which may be the string as it is or an object
that describes the directive.
"""
# Process the directive values if necessary. name and ret don't
# need any processing.
if d_name.startswith('include'):
d_val = d_val.split(',')
elif d_name == 'args':
d_val = d_val.split(':')
# Check if args type match
if not d_val[0] == func_args:
die("Args mismatch, should be %s, but get %s" % (d_val[0], func_args))
# Return the values.
return d_val
def parse_file(func_types):
"""Parse an input file
Given a function name, open and parse an input file for the function
and get the necessary parameters for the generated code and the list
of inputs.
Args:
func: The function name
Returns:
A tuple of two elements, one a dictionary of directives and the
other a dictionary of all input values.
"""
all_vals = {}
# Valid directives.
directives = {
'name': '',
'args': [],
'includes': [],
'include-sources': [],
'ret': '',
'init': ''
}
func = func_types[-1]
try:
with open('../benchtests/libmvec/%s-inputs' % func) as f:
for line in f:
# Look for directives and parse it if found.
if line.startswith('##'):
try:
d_name, d_val = line[2:].split(':', 1)
d_name = d_name.strip()
d_val = d_val.strip()
directives[d_name] = _process_directive(d_name, d_val, func_types[1])
except (IndexError, KeyError):
die('Invalid directive: %s' % line[2:])
# Skip blank lines and comments.
line = line.split('#', 1)[0].rstrip()
if not line:
continue
# Otherwise, we're an input. Add to the appropriate
# input set.
cur_name = directives['name']
all_vals.setdefault(cur_name, [])
all_vals[cur_name].append(line)
except IOError as ex:
die("Failed to open input file (%s): %s" % (ex.filename, ex.strerror))
return directives, all_vals
def die(msg):
"""Exit with an error
Prints an error message to the standard error stream and exits with
a non-zero status.
Args:
msg: The error message to print to standard error
"""
print('%s\n' % msg, file=sys.stderr)
sys.exit(os.EX_DATAERR)
def main(args):
"""Main function
Use the first command line argument as function name and parse its
input file to generate C source that calls the function repeatedly
for the input.
Args:
args: The command line arguments with the program name dropped
Returns:
os.EX_USAGE on error and os.EX_OK on success.
"""
if len(args) != 1:
print('Usage: %s ' % sys.argv[0])
return os.EX_USAGE
func_types = args[0].split('-')
directives, all_vals = parse_file(func_types)
gen_source(func_types, directives, all_vals)
return os.EX_OK
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))