/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2017 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /************************************************************************/ /* MODULE_NAME: atnat.c */ /* */ /* FUNCTIONS: uatan */ /* atanMp */ /* signArctan */ /* */ /* */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */ /* mpatan.c mpatan2.c mpsqrt.c */ /* uatan.tbl */ /* */ /* An ultimate atan() routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of atan(x). */ /* */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /************************************************************************/ #include #include "mpa.h" #include "MathLib.h" #include "uatan.tbl" #include "atnat.h" #include #include #include #include #include #include void __mpatan (mp_no *, mp_no *, int); /* see definition in mpatan.c */ static double atanMp (double, const int[]); /* Fix the sign of y and return */ static double __signArctan (double x, double y) { return __copysign (y, x); } /* An ultimate atan() routine. Given an IEEE double machine number x, */ /* routine computes the correctly rounded (to nearest) value of atan(x). */ double __atan (double x) { double cor, s1, ss1, s2, ss2, t1, t2, t3, t7, t8, t9, t10, u, u2, u3, v, vv, w, ww, y, yy, z, zz; #ifndef DLA_FMS double t4, t5, t6; #endif int i, ux, dx; static const int pr[M] = { 6, 8, 10, 32 }; number num; num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; /* x=NaN */ if (((ux & 0x7ff00000) == 0x7ff00000) && (((ux & 0x000fffff) | dx) != 0x00000000)) return x + x; /* Regular values of x, including denormals +-0 and +-INF */ SET_RESTORE_ROUND (FE_TONEAREST); u = (x < 0) ? -x : x; if (u < C) { if (u < B) { if (u < A) { math_check_force_underflow_nonneg (u); return x; } else { /* A <= u < B */ v = x * x; yy = d11.d + v * d13.d; yy = d9.d + v * yy; yy = d7.d + v * yy; yy = d5.d + v * yy; yy = d3.d + v * yy; yy *= x * v; if ((y = x + (yy - U1 * x)) == x + (yy + U1 * x)) return y; EMULV (x, x, v, vv, t1, t2, t3, t4, t5); /* v+vv=x^2 */ s1 = f17.d + v * f19.d; s1 = f15.d + v * s1; s1 = f13.d + v * s1; s1 = f11.d + v * s1; s1 *= v; ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); MUL2 (x, 0, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (x, 0, s2, ss2, s1, ss1, t1, t2); if ((y = s1 + (ss1 - U5 * s1)) == s1 + (ss1 + U5 * s1)) return y; return atanMp (x, pr); } } else { /* B <= u < C */ i = (TWO52 + TWO8 * u) - TWO52; i -= 16; z = u - cij[i][0].d; yy = cij[i][5].d + z * cij[i][6].d; yy = cij[i][4].d + z * yy; yy = cij[i][3].d + z * yy; yy = cij[i][2].d + z * yy; yy *= z; t1 = cij[i][1].d; if (i < 112) { if (i < 48) u2 = U21; /* u < 1/4 */ else u2 = U22; } /* 1/4 <= u < 1/2 */ else { if (i < 176) u2 = U23; /* 1/2 <= u < 3/4 */ else u2 = U24; } /* 3/4 <= u <= 1 */ if ((y = t1 + (yy - u2 * t1)) == t1 + (yy + u2 * t1)) return __signArctan (x, y); z = u - hij[i][0].d; s1 = hij[i][14].d + z * hij[i][15].d; s1 = hij[i][13].d + z * s1; s1 = hij[i][12].d + z * s1; s1 = hij[i][11].d + z * s1; s1 *= z; ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); if ((y = s2 + (ss2 - U6 * s2)) == s2 + (ss2 + U6 * s2)) return __signArctan (x, y); return atanMp (x, pr); } } else { if (u < D) { /* C <= u < D */ w = 1 / u; EMULV (w, u, t1, t2, t3, t4, t5, t6, t7); ww = w * ((1 - t1) - t2); i = (TWO52 + TWO8 * w) - TWO52; i -= 16; z = (w - cij[i][0].d) + ww; yy = cij[i][5].d + z * cij[i][6].d; yy = cij[i][4].d + z * yy; yy = cij[i][3].d + z * yy; yy = cij[i][2].d + z * yy; yy = HPI1 - z * yy; t1 = HPI - cij[i][1].d; if (i < 112) u3 = U31; /* w < 1/2 */ else u3 = U32; /* w >= 1/2 */ if ((y = t1 + (yy - u3)) == t1 + (yy + u3)) return __signArctan (x, y); DIV2 (1, 0, u, 0, w, ww, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10); t1 = w - hij[i][0].d; EADD (t1, ww, z, zz); s1 = hij[i][14].d + z * hij[i][15].d; s1 = hij[i][13].d + z * s1; s1 = hij[i][12].d + z * s1; s1 = hij[i][11].d + z * s1; s1 *= z; ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); SUB2 (HPI, HPI1, s2, ss2, s1, ss1, t1, t2); if ((y = s1 + (ss1 - U7)) == s1 + (ss1 + U7)) return __signArctan (x, y); return atanMp (x, pr); } else { if (u < E) { /* D <= u < E */ w = 1 / u; v = w * w; EMULV (w, u, t1, t2, t3, t4, t5, t6, t7); yy = d11.d + v * d13.d; yy = d9.d + v * yy; yy = d7.d + v * yy; yy = d5.d + v * yy; yy = d3.d + v * yy; yy *= w * v; ww = w * ((1 - t1) - t2); ESUB (HPI, w, t3, cor); yy = ((HPI1 + cor) - ww) - yy; if ((y = t3 + (yy - U4)) == t3 + (yy + U4)) return __signArctan (x, y); DIV2 (1, 0, u, 0, w, ww, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10); MUL2 (w, ww, w, ww, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); s1 = f17.d + v * f19.d; s1 = f15.d + v * s1; s1 = f13.d + v * s1; s1 = f11.d + v * s1; s1 *= v; ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); MUL2 (w, ww, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (w, ww, s2, ss2, s1, ss1, t1, t2); SUB2 (HPI, HPI1, s1, ss1, s2, ss2, t1, t2); if ((y = s2 + (ss2 - U8)) == s2 + (ss2 + U8)) return __signArctan (x, y); return atanMp (x, pr); } else { /* u >= E */ if (x > 0) return HPI; else return MHPI; } } } } /* Final stages. Compute atan(x) by multiple precision arithmetic */ static double atanMp (double x, const int pr[]) { mp_no mpx, mpy, mpy2, mperr, mpt1, mpy1; double y1, y2; int i, p; for (i = 0; i < M; i++) { p = pr[i]; __dbl_mp (x, &mpx, p); __mpatan (&mpx, &mpy, p); __dbl_mp (u9[i].d, &mpt1, p); __mul (&mpy, &mpt1, &mperr, p); __add (&mpy, &mperr, &mpy1, p); __sub (&mpy, &mperr, &mpy2, p); __mp_dbl (&mpy1, &y1, p); __mp_dbl (&mpy2, &y2, p); if (y1 == y2) { LIBC_PROBE (slowatan, 3, &p, &x, &y1); return y1; } } LIBC_PROBE (slowatan_inexact, 3, &p, &x, &y1); return y1; /*if impossible to do exact computing */ } #ifndef __atan libm_alias_double (__atan, atan) #endif