/* e_hypotl.c -- long double version of e_hypot.c. * Conversion to long double by Ulrich Drepper, * Cygnus Support, drepper@cygnus.com. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* __ieee754_hypotl(x,y) * * Method : * If (assume round-to-nearest) z=x*x+y*y * has error less than sqrt(2)/2 ulp, than * sqrt(z) has error less than 1 ulp (exercise). * * So, compute sqrt(x*x+y*y) with some care as * follows to get the error below 1 ulp: * * Assume x>y>0; * (if possible, set rounding to round-to-nearest) * 1. if x > 2y use * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y * where x1 = x with lower 32 bits cleared, x2 = x-x1; else * 2. if x <= 2y use * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, * y1= y with lower 32 bits chopped, y2 = y-y1. * * NOTE: scaling may be necessary if some argument is too * large or too tiny * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns sqrt(x^2+y^2) with error less * than 1 ulps (units in the last place) */ #include #include long double __ieee754_hypotl(long double x, long double y) { long double a,b,t1,t2,y1,y2,w; uint32_t j,k,ea,eb; GET_LDOUBLE_EXP(ea,x); ea &= 0x7fff; GET_LDOUBLE_EXP(eb,y); eb &= 0x7fff; if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;} SET_LDOUBLE_EXP(a,ea); /* a <- |a| */ SET_LDOUBLE_EXP(b,eb); /* b <- |b| */ if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */ k=0; if(__builtin_expect(ea > 0x5f3f,0)) { /* a>2**8000 */ if(ea == 0x7fff) { /* Inf or NaN */ uint32_t exp __attribute__ ((unused)); uint32_t high,low; w = a+b; /* for sNaN */ if (issignaling (a) || issignaling (b)) return w; GET_LDOUBLE_WORDS(exp,high,low,a); if(((high&0x7fffffff)|low)==0) w = a; GET_LDOUBLE_WORDS(exp,high,low,b); if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b; return w; } /* scale a and b by 2**-9600 */ ea -= 0x2580; eb -= 0x2580; k += 9600; SET_LDOUBLE_EXP(a,ea); SET_LDOUBLE_EXP(b,eb); } if(__builtin_expect(eb < 0x20bf, 0)) { /* b < 2**-8000 */ if(eb == 0) { /* subnormal b or 0 */ uint32_t exp __attribute__ ((unused)); uint32_t high,low; GET_LDOUBLE_WORDS(exp,high,low,b); if((high|low)==0) return a; SET_LDOUBLE_WORDS(t1, 0x7ffd, 0x80000000, 0); /* t1=2^16382 */ b *= t1; a *= t1; k -= 16382; GET_LDOUBLE_EXP (ea, a); GET_LDOUBLE_EXP (eb, b); if (eb > ea) { t1 = a; a = b; b = t1; j = ea; ea = eb; eb = j; } } else { /* scale a and b by 2^9600 */ ea += 0x2580; /* a *= 2^9600 */ eb += 0x2580; /* b *= 2^9600 */ k -= 9600; SET_LDOUBLE_EXP(a,ea); SET_LDOUBLE_EXP(b,eb); } } /* medium size a and b */ w = a-b; if (w>b) { uint32_t high; GET_LDOUBLE_MSW(high,a); SET_LDOUBLE_WORDS(t1,ea,high,0); t2 = a-t1; w = sqrtl(t1*t1-(b*(-b)-t2*(a+t1))); } else { uint32_t high; GET_LDOUBLE_MSW(high,b); a = a+a; SET_LDOUBLE_WORDS(y1,eb,high,0); y2 = b - y1; GET_LDOUBLE_MSW(high,a); SET_LDOUBLE_WORDS(t1,ea+1,high,0); t2 = a - t1; w = sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b))); } if(k!=0) { uint32_t exp; t1 = 1.0; GET_LDOUBLE_EXP(exp,t1); SET_LDOUBLE_EXP(t1,exp+k); w *= t1; math_check_force_underflow_nonneg (w); return w; } else return w; } strong_alias (__ieee754_hypotl, __hypotl_finite)