/* Double-precision vector (Advanced SIMD) erf function Copyright (C) 2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "v_math.h" static const struct data { float64x2_t third; float64x2_t tenth, two_over_five, two_over_nine; double two_over_fifteen, two_over_fortyfive; float64x2_t max, shift; uint64x2_t max_idx; #if WANT_SIMD_EXCEPT float64x2_t tiny_bound, huge_bound, scale_minus_one; #endif } data = { .max_idx = V2 (768), .third = V2 (0x1.5555555555556p-2), /* used to compute 2/3 and 1/6 too. */ .two_over_fifteen = 0x1.1111111111111p-3, .tenth = V2 (-0x1.999999999999ap-4), .two_over_five = V2 (-0x1.999999999999ap-2), .two_over_nine = V2 (-0x1.c71c71c71c71cp-3), .two_over_fortyfive = 0x1.6c16c16c16c17p-5, .max = V2 (5.9921875), /* 6 - 1/128. */ .shift = V2 (0x1p45), #if WANT_SIMD_EXCEPT .huge_bound = V2 (0x1p205), .tiny_bound = V2 (0x1p-226), .scale_minus_one = V2 (0x1.06eba8214db69p-3), /* 2/sqrt(pi) - 1.0. */ #endif }; #define AbsMask 0x7fffffffffffffff struct entry { float64x2_t erf; float64x2_t scale; }; static inline struct entry lookup (uint64x2_t i) { struct entry e; float64x2_t e1 = vld1q_f64 (&__v_erf_data.tab[vgetq_lane_u64 (i, 0)].erf), e2 = vld1q_f64 (&__v_erf_data.tab[vgetq_lane_u64 (i, 1)].erf); e.erf = vuzp1q_f64 (e1, e2); e.scale = vuzp2q_f64 (e1, e2); return e; } /* Double-precision implementation of vector erf(x). Approximation based on series expansion near x rounded to nearest multiple of 1/128. Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r, erf(x) ~ erf(r) + scale * d * [ + 1 - r d + 1/3 (2 r^2 - 1) d^2 - 1/6 (r (2 r^2 - 3)) d^3 + 1/30 (4 r^4 - 12 r^2 + 3) d^4 - 1/90 (4 r^4 - 20 r^2 + 15) d^5 ] Maximum measure error: 2.29 ULP V_NAME_D1 (erf)(-0x1.00003c924e5d1p-8) got -0x1.20dd59132ebadp-8 want -0x1.20dd59132ebafp-8. */ float64x2_t VPCS_ATTR V_NAME_D1 (erf) (float64x2_t x) { const struct data *dat = ptr_barrier (&data); float64x2_t a = vabsq_f64 (x); /* Reciprocal conditions that do not catch NaNs so they can be used in BSLs to return expected results. */ uint64x2_t a_le_max = vcaleq_f64 (x, dat->max); uint64x2_t a_gt_max = vcagtq_f64 (x, dat->max); #if WANT_SIMD_EXCEPT /* |x| huge or tiny. */ uint64x2_t cmp1 = vcgtq_f64 (a, dat->huge_bound); uint64x2_t cmp2 = vcltq_f64 (a, dat->tiny_bound); uint64x2_t cmp = vorrq_u64 (cmp1, cmp2); /* If any lanes are special, mask them with 1 for small x or 8 for large values and retain a copy of a to allow special case handler to fix special lanes later. This is only necessary if fenv exceptions are to be triggered correctly. */ if (__glibc_unlikely (v_any_u64 (cmp))) { a = vbslq_f64 (cmp1, v_f64 (8.0), a); a = vbslq_f64 (cmp2, v_f64 (1.0), a); } #endif /* Set r to multiple of 1/128 nearest to |x|. */ float64x2_t shift = dat->shift; float64x2_t z = vaddq_f64 (a, shift); /* Lookup erf(r) and scale(r) in table, without shortcut for small values, but with saturated indices for large values and NaNs in order to avoid segfault. */ uint64x2_t i = vsubq_u64 (vreinterpretq_u64_f64 (z), vreinterpretq_u64_f64 (shift)); i = vbslq_u64 (a_le_max, i, dat->max_idx); struct entry e = lookup (i); float64x2_t r = vsubq_f64 (z, shift); /* erf(x) ~ erf(r) + scale * d * poly (r, d). */ float64x2_t d = vsubq_f64 (a, r); float64x2_t d2 = vmulq_f64 (d, d); float64x2_t r2 = vmulq_f64 (r, r); float64x2_t two_over_fifteen_and_fortyfive = vld1q_f64 (&dat->two_over_fifteen); /* poly (d, r) = 1 + p1(r) * d + p2(r) * d^2 + ... + p5(r) * d^5. */ float64x2_t p1 = r; float64x2_t p2 = vfmsq_f64 (dat->third, r2, vaddq_f64 (dat->third, dat->third)); float64x2_t p3 = vmulq_f64 (r, vfmaq_f64 (v_f64 (-0.5), r2, dat->third)); float64x2_t p4 = vfmaq_laneq_f64 (dat->two_over_five, r2, two_over_fifteen_and_fortyfive, 0); p4 = vfmsq_f64 (dat->tenth, r2, p4); float64x2_t p5 = vfmaq_laneq_f64 (dat->two_over_nine, r2, two_over_fifteen_and_fortyfive, 1); p5 = vmulq_f64 (r, vfmaq_f64 (vmulq_f64 (v_f64 (0.5), dat->third), r2, p5)); float64x2_t p34 = vfmaq_f64 (p3, d, p4); float64x2_t p12 = vfmaq_f64 (p1, d, p2); float64x2_t y = vfmaq_f64 (p34, d2, p5); y = vfmaq_f64 (p12, d2, y); y = vfmaq_f64 (e.erf, e.scale, vfmsq_f64 (d, d2, y)); /* Solves the |x| = inf and NaN cases. */ y = vbslq_f64 (a_gt_max, v_f64 (1.0), y); /* Copy sign. */ y = vbslq_f64 (v_u64 (AbsMask), y, x); #if WANT_SIMD_EXCEPT if (__glibc_unlikely (v_any_u64 (cmp2))) { /* Neutralise huge values of x before fixing small values. */ x = vbslq_f64 (cmp1, v_f64 (1.0), x); /* Fix tiny values that trigger spurious underflow. */ return vbslq_f64 (cmp2, vfmaq_f64 (x, dat->scale_minus_one, x), y); } #endif return y; }