/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2012 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /*********************************************************************/ /* MODULE_NAME: utan.c */ /* */ /* FUNCTIONS: utan */ /* tanMp */ /* */ /* FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h */ /* branred.c sincos32.c mptan.c */ /* utan.tbl */ /* */ /* An ultimate tan routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of tan(x). */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /*********************************************************************/ #include #include "endian.h" #include #include "mpa.h" #include "MathLib.h" #include #include #include #ifndef SECTION # define SECTION #endif static double tanMp(double); void __mptan(double, mp_no *, int); double SECTION tan(double x) { #include "utan.h" #include "utan.tbl" int ux,i,n; double a,da,a2,b,db,c,dc,c1,cc1,c2,cc2,c3,cc3,fi,ffi,gi,pz,s,sy, t,t1,t2,t3,t4,t7,t8,t9,t10,w,x2,xn,xx2,y,ya,yya,z0,z,zz,z2,zz2; #ifndef DLA_FMS double t5,t6; #endif int p; number num,v; mp_no mpa,mpt1,mpt2; #if 0 mp_no mpy; #endif double retval; int __branred(double, double *, double *); int __mpranred(double, mp_no *, int); SET_RESTORE_ROUND_53BIT (FE_TONEAREST); /* x=+-INF, x=NaN */ num.d = x; ux = num.i[HIGH_HALF]; if ((ux&0x7ff00000)==0x7ff00000) { if ((ux&0x7fffffff)==0x7ff00000) __set_errno (EDOM); retval = x-x; goto ret; } w=(x<0.0) ? -x : x; /* (I) The case abs(x) <= 1.259e-8 */ if (w<=g1.d) { retval = x; goto ret; } /* (II) The case 1.259e-8 < abs(x) <= 0.0608 */ if (w<=g2.d) { /* First stage */ x2 = x*x; t2 = x*x2*(d3.d+x2*(d5.d+x2*(d7.d+x2*(d9.d+x2*d11.d)))); if ((y=x+(t2-u1.d*t2)) == x+(t2+u1.d*t2)) { retval = y; goto ret; } /* Second stage */ c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+ x2*a27.d)))))); EMULV(x,x,x2,xx2,t1,t2,t3,t4,t5) ADD2(a13.d,aa13.d,c1,0.0,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(x ,0.0,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(x ,0.0,c2,cc2,c1,cc1,t1,t2) if ((y=c1+(cc1-u2.d*c1)) == c1+(cc1+u2.d*c1)) { retval = y; goto ret; } retval = tanMp(x); goto ret; } /* (III) The case 0.0608 < abs(x) <= 0.787 */ if (w<=g3.d) { /* First stage */ i = ((int) (mfftnhf.d+TWO8*w)); z = w-xfg[i][0].d; z2 = z*z; s = (x<0.0) ? MONE : ONE; pz = z+z*z2*(e0.d+z2*e1.d); fi = xfg[i][1].d; gi = xfg[i][2].d; t2 = pz*(gi+fi)/(gi-pz); if ((y=fi+(t2-fi*u3.d))==fi+(t2+fi*u3.d)) { retval = (s*y); goto ret; } t3 = (t2<0.0) ? -t2 : t2; t4 = fi*ua3.d+t3*ub3.d; if ((y=fi+(t2-t4))==fi+(t2+t4)) { retval = (s*y); goto ret; } /* Second stage */ ffi = xfg[i][3].d; c1 = z2*(a7.d+z2*(a9.d+z2*a11.d)); EMULV(z,z,z2,zz2,t1,t2,t3,t4,t5) ADD2(a5.d,aa5.d,c1,0.0,c2,cc2,t1,t2) MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2) MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(z ,0.0,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(z ,0.0,c2,cc2,c1,cc1,t1,t2) ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2) MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8) SUB2(1.0,0.0,c3,cc3,c1,cc1,t1,t2) DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c3+(cc3-u4.d*c3))==c3+(cc3+u4.d*c3)) { retval = (s*y); goto ret; } retval = tanMp(x); goto ret; } /* (---) The case 0.787 < abs(x) <= 25 */ if (w<=g4.d) { /* Range reduction by algorithm i */ t = (x*hpinv.d + toint.d); xn = t - toint.d; v.d = t; t1 = (x - xn*mp1.d) - xn*mp2.d; n =v.i[LOW_HALF] & 0x00000001; da = xn*mp3.d; a=t1-da; da = (t1-a)-da; if (a<0.0) {ya=-a; yya=-da; sy=MONE;} else {ya= a; yya= da; sy= ONE;} /* (IV),(V) The case 0.787 < abs(x) <= 25, abs(y) <= 1e-7 */ if (ya<=gy1.d) { retval = tanMp(x); goto ret; } /* (VI) The case 0.787 < abs(x) <= 25, 1e-7 < abs(y) <= 0.0608 */ if (ya<=gy2.d) { a2 = a*a; t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d)))); if (n) { /* First stage -cot */ EADD(a,t2,b,db) DIV2(1.0,0.0,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c+(dc-u6.d*c))==c+(dc+u6.d*c)) { retval = (-y); goto ret; } } else { /* First stage tan */ if ((y=a+(t2-u5.d*a))==a+(t2+u5.d*a)) { retval = y; goto ret; } } /* Second stage */ /* Range reduction by algorithm ii */ t = (x*hpinv.d + toint.d); xn = t - toint.d; v.d = t; t1 = (x - xn*mp1.d) - xn*mp2.d; n =v.i[LOW_HALF] & 0x00000001; da = xn*pp3.d; t=t1-da; da = (t1-t)-da; t1 = xn*pp4.d; a = t - t1; da = ((t-a)-t1)+da; /* Second stage */ EADD(a,da,t1,t2) a=t1; da=t2; MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8) c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+ x2*a27.d)))))); ADD2(a13.d,aa13.d,c1,0.0,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2) if (n) { /* Second stage -cot */ DIV2(1.0,0.0,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c2+(cc2-u8.d*c2)) == c2+(cc2+u8.d*c2)) { retval = (-y); goto ret; } } else { /* Second stage tan */ if ((y=c1+(cc1-u7.d*c1)) == c1+(cc1+u7.d*c1)) { retval = y; goto ret; } } retval = tanMp(x); goto ret; } /* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */ /* First stage */ i = ((int) (mfftnhf.d+TWO8*ya)); z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z; pz = z+z*z2*(e0.d+z2*e1.d); fi = xfg[i][1].d; gi = xfg[i][2].d; if (n) { /* -cot */ t2 = pz*(fi+gi)/(fi+pz); if ((y=gi-(t2-gi*u10.d))==gi-(t2+gi*u10.d)) { retval = (-sy*y); goto ret; } t3 = (t2<0.0) ? -t2 : t2; t4 = gi*ua10.d+t3*ub10.d; if ((y=gi-(t2-t4))==gi-(t2+t4)) { retval = (-sy*y); goto ret; } } else { /* tan */ t2 = pz*(gi+fi)/(gi-pz); if ((y=fi+(t2-fi*u9.d))==fi+(t2+fi*u9.d)) { retval = (sy*y); goto ret; } t3 = (t2<0.0) ? -t2 : t2; t4 = fi*ua9.d+t3*ub9.d; if ((y=fi+(t2-t4))==fi+(t2+t4)) { retval = (sy*y); goto ret; } } /* Second stage */ ffi = xfg[i][3].d; EADD(z0,yya,z,zz) MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8) c1 = z2*(a7.d+z2*(a9.d+z2*a11.d)); ADD2(a5.d,aa5.d,c1,0.0,c2,cc2,t1,t2) MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2) MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2) ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2) MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8) SUB2(1.0,0.0,c3,cc3,c1,cc1,t1,t2) if (n) { /* -cot */ DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c3+(cc3-u12.d*c3))==c3+(cc3+u12.d*c3)) { retval = (-sy*y); goto ret; } } else { /* tan */ DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c3+(cc3-u11.d*c3))==c3+(cc3+u11.d*c3)) { retval = (sy*y); goto ret; } } retval = tanMp(x); goto ret; } /* (---) The case 25 < abs(x) <= 1e8 */ if (w<=g5.d) { /* Range reduction by algorithm ii */ t = (x*hpinv.d + toint.d); xn = t - toint.d; v.d = t; t1 = (x - xn*mp1.d) - xn*mp2.d; n =v.i[LOW_HALF] & 0x00000001; da = xn*pp3.d; t=t1-da; da = (t1-t)-da; t1 = xn*pp4.d; a = t - t1; da = ((t-a)-t1)+da; EADD(a,da,t1,t2) a=t1; da=t2; if (a<0.0) {ya=-a; yya=-da; sy=MONE;} else {ya= a; yya= da; sy= ONE;} /* (+++) The case 25 < abs(x) <= 1e8, abs(y) <= 1e-7 */ if (ya<=gy1.d) { retval = tanMp(x); goto ret; } /* (VIII) The case 25 < abs(x) <= 1e8, 1e-7 < abs(y) <= 0.0608 */ if (ya<=gy2.d) { a2 = a*a; t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d)))); if (n) { /* First stage -cot */ EADD(a,t2,b,db) DIV2(1.0,0.0,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c+(dc-u14.d*c))==c+(dc+u14.d*c)) { retval = (-y); goto ret; } } else { /* First stage tan */ if ((y=a+(t2-u13.d*a))==a+(t2+u13.d*a)) { retval = y; goto ret; } } /* Second stage */ MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8) c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+ x2*a27.d)))))); ADD2(a13.d,aa13.d,c1,0.0,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2) if (n) { /* Second stage -cot */ DIV2(1.0,0.0,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c2+(cc2-u16.d*c2)) == c2+(cc2+u16.d*c2)) { retval = (-y); goto ret; } } else { /* Second stage tan */ if ((y=c1+(cc1-u15.d*c1)) == c1+(cc1+u15.d*c1)) { retval = (y); goto ret; } } retval = tanMp(x); goto ret; } /* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */ /* First stage */ i = ((int) (mfftnhf.d+TWO8*ya)); z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z; pz = z+z*z2*(e0.d+z2*e1.d); fi = xfg[i][1].d; gi = xfg[i][2].d; if (n) { /* -cot */ t2 = pz*(fi+gi)/(fi+pz); if ((y=gi-(t2-gi*u18.d))==gi-(t2+gi*u18.d)) { retval = (-sy*y); goto ret; } t3 = (t2<0.0) ? -t2 : t2; t4 = gi*ua18.d+t3*ub18.d; if ((y=gi-(t2-t4))==gi-(t2+t4)) { retval = (-sy*y); goto ret; } } else { /* tan */ t2 = pz*(gi+fi)/(gi-pz); if ((y=fi+(t2-fi*u17.d))==fi+(t2+fi*u17.d)) { retval = (sy*y); goto ret; } t3 = (t2<0.0) ? -t2 : t2; t4 = fi*ua17.d+t3*ub17.d; if ((y=fi+(t2-t4))==fi+(t2+t4)) { retval = (sy*y); goto ret; } } /* Second stage */ ffi = xfg[i][3].d; EADD(z0,yya,z,zz) MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8) c1 = z2*(a7.d+z2*(a9.d+z2*a11.d)); ADD2(a5.d,aa5.d,c1,0.0,c2,cc2,t1,t2) MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2) MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2) ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2) MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8) SUB2(1.0,0.0,c3,cc3,c1,cc1,t1,t2) if (n) { /* -cot */ DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c3+(cc3-u20.d*c3))==c3+(cc3+u20.d*c3)) { retval = (-sy*y); goto ret; } } else { /* tan */ DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c3+(cc3-u19.d*c3))==c3+(cc3+u19.d*c3)) { retval = (sy*y); goto ret; } } retval = tanMp(x); goto ret; } /* (---) The case 1e8 < abs(x) < 2**1024 */ /* Range reduction by algorithm iii */ n = (__branred(x,&a,&da)) & 0x00000001; EADD(a,da,t1,t2) a=t1; da=t2; if (a<0.0) {ya=-a; yya=-da; sy=MONE;} else {ya= a; yya= da; sy= ONE;} /* (+++) The case 1e8 < abs(x) < 2**1024, abs(y) <= 1e-7 */ if (ya<=gy1.d) { retval = tanMp(x); goto ret; } /* (X) The case 1e8 < abs(x) < 2**1024, 1e-7 < abs(y) <= 0.0608 */ if (ya<=gy2.d) { a2 = a*a; t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d)))); if (n) { /* First stage -cot */ EADD(a,t2,b,db) DIV2(1.0,0.0,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c+(dc-u22.d*c))==c+(dc+u22.d*c)) { retval = (-y); goto ret; } } else { /* First stage tan */ if ((y=a+(t2-u21.d*a))==a+(t2+u21.d*a)) { retval = y; goto ret; } } /* Second stage */ /* Reduction by algorithm iv */ p=10; n = (__mpranred(x,&mpa,p)) & 0x00000001; __mp_dbl(&mpa,&a,p); __dbl_mp(a,&mpt1,p); __sub(&mpa,&mpt1,&mpt2,p); __mp_dbl(&mpt2,&da,p); MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8) c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+ x2*a27.d)))))); ADD2(a13.d,aa13.d,c1,0.0,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2) MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2) if (n) { /* Second stage -cot */ DIV2(1.0,0.0,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c2+(cc2-u24.d*c2)) == c2+(cc2+u24.d*c2)) { retval = (-y); goto ret; } } else { /* Second stage tan */ if ((y=c1+(cc1-u23.d*c1)) == c1+(cc1+u23.d*c1)) { retval = y; goto ret; } } retval = tanMp(x); goto ret; } /* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */ /* First stage */ i = ((int) (mfftnhf.d+TWO8*ya)); z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z; pz = z+z*z2*(e0.d+z2*e1.d); fi = xfg[i][1].d; gi = xfg[i][2].d; if (n) { /* -cot */ t2 = pz*(fi+gi)/(fi+pz); if ((y=gi-(t2-gi*u26.d))==gi-(t2+gi*u26.d)) { retval = (-sy*y); goto ret; } t3 = (t2<0.0) ? -t2 : t2; t4 = gi*ua26.d+t3*ub26.d; if ((y=gi-(t2-t4))==gi-(t2+t4)) { retval = (-sy*y); goto ret; } } else { /* tan */ t2 = pz*(gi+fi)/(gi-pz); if ((y=fi+(t2-fi*u25.d))==fi+(t2+fi*u25.d)) { retval = (sy*y); goto ret; } t3 = (t2<0.0) ? -t2 : t2; t4 = fi*ua25.d+t3*ub25.d; if ((y=fi+(t2-t4))==fi+(t2+t4)) { retval = (sy*y); goto ret; } } /* Second stage */ ffi = xfg[i][3].d; EADD(z0,yya,z,zz) MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8) c1 = z2*(a7.d+z2*(a9.d+z2*a11.d)); ADD2(a5.d,aa5.d,c1,0.0,c2,cc2,t1,t2) MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2) MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2) ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2) MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8) SUB2(1.0,0.0,c3,cc3,c1,cc1,t1,t2) if (n) { /* -cot */ DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c3+(cc3-u28.d*c3))==c3+(cc3+u28.d*c3)) { retval = (-sy*y); goto ret; } } else { /* tan */ DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) if ((y=c3+(cc3-u27.d*c3))==c3+(cc3+u27.d*c3)) { retval = (sy*y); goto ret; } } retval = tanMp(x); goto ret; ret: return retval; } /* multiple precision stage */ /* Convert x to multi precision number,compute tan(x) by mptan() routine */ /* and converts result back to double */ static double SECTION tanMp(double x) { int p; double y; mp_no mpy; p=32; __mptan(x, &mpy, p); __mp_dbl(&mpy,&y,p); return y; } #ifdef NO_LONG_DOUBLE weak_alias (tan, tanl) #endif