/* Complex hyperbole tangent for long double. IBM extended format version. Copyright (C) 1997-2015 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include /* IBM long double GCC builtin sets LDBL_EPSILON == LDBL_DENORM_MIN */ static const long double ldbl_eps = 0x1p-106L; __complex__ long double __ctanhl (__complex__ long double x) { __complex__ long double res; if (!isfinite (__real__ x) || !isfinite (__imag__ x)) { if (isinf (__real__ x)) { __real__ res = __copysignl (1.0L, __real__ x); __imag__ res = __copysignl (0.0L, __imag__ x); } else if (__imag__ x == 0.0) { res = x; } else { __real__ res = __nanl (""); __imag__ res = __nanl (""); #ifdef FE_INVALID if (isinf (__imag__ x)) feraiseexcept (FE_INVALID); #endif } } else { long double sinix, cosix; long double den; const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2.0L); /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */ __sincosl (__imag__ x, &sinix, &cosix); if (fabsl (__real__ x) > t) { /* Avoid intermediate overflow when the imaginary part of the result may be subnormal. Ignoring negligible terms, the real part is +/- 1, the imaginary part is sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */ long double exp_2t = __ieee754_expl (2 * t); __real__ res = __copysignl (1.0L, __real__ x); __imag__ res = 4 * sinix * cosix; __real__ x = fabsl (__real__ x); __real__ x -= t; __imag__ res /= exp_2t; if (__real__ x > t) { /* Underflow (original real part of x has absolute value > 2t). */ __imag__ res /= exp_2t; } else __imag__ res /= __ieee754_expl (2.0L * __real__ x); } else { long double sinhrx, coshrx; if (fabs (__real__ x) > LDBL_MIN) { sinhrx = __ieee754_sinhl (__real__ x); coshrx = __ieee754_coshl (__real__ x); } else { sinhrx = __real__ x; coshrx = 1.0L; } if (fabsl (sinhrx) > fabsl (cosix) * ldbl_eps) den = sinhrx * sinhrx + cosix * cosix; else den = cosix * cosix; __real__ res = sinhrx * (coshrx / den); __imag__ res = sinix * (cosix / den); } /* __gcc_qmul does not respect -0.0 so we need the following fixup. */ if ((__real__ res == 0.0L) && (__real__ x == 0.0L)) __real__ res = __real__ x; if ((__real__ res == 0.0L) && (__imag__ x == 0.0L)) __imag__ res = __imag__ x; } return res; } long_double_symbol (libm, __ctanhl, ctanhl);