/* strnlen/wcsnlen optimized with 256/512-bit EVEX instructions. Copyright (C) 2022-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #if ISA_SHOULD_BUILD (4) # include #ifdef USE_AS_WCSLEN # define VPCMPEQ vpcmpeqd # define VPTESTN vptestnmd # define VPMINU vpminud # define CHAR_SIZE 4 #else # define VPCMPEQ vpcmpeqb # define VPTESTN vptestnmb # define VPMINU vpminub # define CHAR_SIZE 1 #endif #define XZERO VMM_128(0) #define VZERO VMM(0) #define PAGE_SIZE 4096 #define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) #if CHAR_PER_VEC == 32 # define SUB_SHORT(imm, reg) subb $(imm), %VGPR_SZ(reg, 8) #else # define SUB_SHORT(imm, reg) subl $(imm), %VGPR_SZ(reg, 32) #endif #ifdef USE_AS_WCSLEN /* For wide-character, we care more about limitting code size than optimally aligning targets, so just cap nop padding reasonably low. */ # define P2ALIGN(...) .p2align 4,, 6 # define P2ALIGN_CLAMPED(...) P2ALIGN(__VA_ARGS__) #else # define P2ALIGN(x) .p2align x # define P2ALIGN_CLAMPED(x, y) .p2align x,, y #endif .section SECTION(.text), "ax", @progbits /* Aligning entry point to 64 byte, provides better performance for one vector length string. */ ENTRY_P2ALIGN(STRNLEN, 6) /* rdi is pointer to array, rsi is the upper limit. */ /* Check zero length. */ test %RSI_LP, %RSI_LP jz L(zero) #ifdef __ILP32__ /* Clear the upper 32 bits. */ movl %esi, %esi #endif vpxorq %XZERO, %XZERO, %XZERO /* Check that we won't cross a page boundary with our first load. */ movl %edi, %eax shll $20, %eax cmpl $((PAGE_SIZE - VEC_SIZE) << 20), %eax ja L(crosses_page_boundary) /* Check the first VEC_SIZE bytes. Each bit in K0 represents a null byte. */ VPCMPEQ (%rdi), %VZERO, %k0 KMOV %k0, %VRCX /* If src (rcx) is zero, bsf does not change the result. NB: Must use 64-bit bsf here so that upper bits of len are not cleared. */ movq %rsi, %rax bsfq %rcx, %rax /* If rax > CHAR_PER_VEC then rcx must have been zero (no null CHAR) and rsi must be > CHAR_PER_VEC. */ cmpq $CHAR_PER_VEC, %rax ja L(more_1x_vec) /* Check if first match in bounds. */ cmpq %rax, %rsi cmovb %esi, %eax ret #if VEC_SIZE == 32 P2ALIGN_CLAMPED(4, 2) L(zero): L(max_0): movl %esi, %eax ret #endif P2ALIGN_CLAMPED(4, 10) L(more_1x_vec): L(cross_page_continue): /* After this calculation, rax stores the number of elements left to be processed The complexity comes from the fact some elements get read twice due to alignment and we need to be sure we don't count them twice (else, it would just be rsi - CHAR_PER_VEC). */ #ifdef USE_AS_WCSLEN /* Need to compute directly for wcslen as CHAR_SIZE * rsi can overflow. */ movq %rdi, %rax andq $(VEC_SIZE * -1), %rdi subq %rdi, %rax sarq $2, %rax leaq -(CHAR_PER_VEC * 1)(%rax, %rsi), %rax #else /* Calculate ptr + N - VEC_SIZE, then mask off the low bits, then subtract ptr to get the new aligned limit value. */ leaq (VEC_SIZE * -1)(%rsi, %rdi), %rax andq $(VEC_SIZE * -1), %rdi subq %rdi, %rax #endif VPCMPEQ VEC_SIZE(%rdi), %VZERO, %k0 /* Checking here is faster for 256-bit but not 512-bit */ #if VEC_SIZE == 0 KMOV %k0, %VRDX test %VRDX, %VRDX jnz L(last_vec_check) #endif cmpq $(CHAR_PER_VEC * 2), %rax ja L(more_2x_vec) L(last_2x_vec_or_less): /* Checking here is faster for 512-bit but not 256-bit */ #if VEC_SIZE != 0 KMOV %k0, %VRDX test %VRDX, %VRDX jnz L(last_vec_check) #endif /* Check for the end of data. */ SUB_SHORT (CHAR_PER_VEC, rax) jbe L(max_0) /* Check the final remaining vector. */ VPCMPEQ (VEC_SIZE * 2)(%rdi), %VZERO, %k0 KMOV %k0, %VRDX test %VRDX, %VRDX #if VEC_SIZE == 32 jz L(max_0) #else jnz L(last_vec_check) P2ALIGN_CLAMPED(4, 2) L(zero): L(max_0): movl %esi, %eax ret #endif P2ALIGN_CLAMPED(4, 4) L(last_vec_check): bsf %VRDX, %VRDX sub %eax, %edx lea (%rsi, %rdx), %eax cmovae %esi, %eax ret #if VEC_SIZE == 32 P2ALIGN_CLAMPED(4, 8) #endif L(last_4x_vec_or_less): addl $(CHAR_PER_VEC * -4), %eax VPCMPEQ (VEC_SIZE * 5)(%rdi), %VZERO, %k0 #if VEC_SIZE == 64 KMOV %k0, %VRDX test %VRDX, %VRDX jnz L(last_vec_check) #endif subq $(VEC_SIZE * -4), %rdi cmpl $(CHAR_PER_VEC * 2), %eax jbe L(last_2x_vec_or_less) P2ALIGN_CLAMPED(4, 6) L(more_2x_vec): /* Remaining length >= 2 * CHAR_PER_VEC so do VEC0/VEC1 without rechecking bounds. */ /* Already checked in 256-bit case */ #if VEC_SIZE != 0 KMOV %k0, %VRDX test %VRDX, %VRDX jnz L(first_vec_x1) #endif VPCMPEQ (VEC_SIZE * 2)(%rdi), %VZERO, %k0 KMOV %k0, %VRDX test %VRDX, %VRDX jnz L(first_vec_x2) cmpq $(CHAR_PER_VEC * 4), %rax ja L(more_4x_vec) VPCMPEQ (VEC_SIZE * 3)(%rdi), %VZERO, %k0 KMOV %k0, %VRDX addl $(CHAR_PER_VEC * -2), %eax test %VRDX, %VRDX jnz L(last_vec_check) subb $(CHAR_PER_VEC), %al jbe L(max_1) VPCMPEQ (VEC_SIZE * 4)(%rdi), %VZERO, %k0 KMOV %k0, %VRDX test %VRDX, %VRDX jnz L(last_vec_check) L(max_1): movl %esi, %eax ret P2ALIGN_CLAMPED(4, 14) L(first_vec_x2): #if VEC_SIZE == 64 /* If VEC_SIZE == 64 we can fit logic for full return label in spare bytes before next cache line. */ bsf %VRDX, %VRDX sub %eax, %esi leal (CHAR_PER_VEC * 1)(%rsi, %rdx), %eax ret P2ALIGN_CLAMPED(4, 6) #else addl $CHAR_PER_VEC, %esi #endif L(first_vec_x1): bsf %VRDX, %VRDX sub %eax, %esi leal (CHAR_PER_VEC * 0)(%rsi, %rdx), %eax ret #if VEC_SIZE == 64 P2ALIGN_CLAMPED(4, 6) L(first_vec_x4): # if VEC_SIZE == 64 /* If VEC_SIZE == 64 we can fit logic for full return label in spare bytes before next cache line. */ bsf %VRDX, %VRDX sub %eax, %esi leal (CHAR_PER_VEC * 3)(%rsi, %rdx), %eax ret P2ALIGN_CLAMPED(4, 6) # else addl $CHAR_PER_VEC, %esi # endif L(first_vec_x3): bsf %VRDX, %VRDX sub %eax, %esi leal (CHAR_PER_VEC * 2)(%rsi, %rdx), %eax ret #endif P2ALIGN_CLAMPED(6, 20) L(more_4x_vec): VPCMPEQ (VEC_SIZE * 3)(%rdi), %VZERO, %k0 KMOV %k0, %VRDX test %VRDX, %VRDX jnz L(first_vec_x3) VPCMPEQ (VEC_SIZE * 4)(%rdi), %VZERO, %k0 KMOV %k0, %VRDX test %VRDX, %VRDX jnz L(first_vec_x4) /* Check if at last VEC_SIZE * 4 length before aligning for the loop. */ cmpq $(CHAR_PER_VEC * 8), %rax jbe L(last_4x_vec_or_less) /* Compute number of words checked after aligning. */ #ifdef USE_AS_WCSLEN /* Need to compute directly for wcslen as CHAR_SIZE * rsi can overflow. */ leaq (VEC_SIZE * -3)(%rdi), %rdx #else leaq (VEC_SIZE * -3)(%rdi, %rax), %rax #endif subq $(VEC_SIZE * -1), %rdi /* Align data to VEC_SIZE * 4. */ #if VEC_SIZE == 64 /* Saves code size. No evex512 processor has partial register stalls. If that change this can be replaced with `andq $-(VEC_SIZE * 4), %rdi`. */ xorb %dil, %dil #else andq $-(VEC_SIZE * 4), %rdi #endif #ifdef USE_AS_WCSLEN subq %rdi, %rdx sarq $2, %rdx addq %rdx, %rax #else subq %rdi, %rax #endif // mov %rdi, %rdx P2ALIGN(6) L(loop): /* VPMINU and VPCMP combination provide better performance as compared to alternative combinations. */ VMOVA (VEC_SIZE * 4)(%rdi), %VMM(1) VPMINU (VEC_SIZE * 5)(%rdi), %VMM(1), %VMM(2) VMOVA (VEC_SIZE * 6)(%rdi), %VMM(3) VPMINU (VEC_SIZE * 7)(%rdi), %VMM(3), %VMM(4) VPTESTN %VMM(2), %VMM(2), %k0 VPTESTN %VMM(4), %VMM(4), %k1 subq $-(VEC_SIZE * 4), %rdi KORTEST %k0, %k1 jnz L(loopend) subq $(CHAR_PER_VEC * 4), %rax ja L(loop) mov %rsi, %rax ret #if VEC_SIZE == 32 P2ALIGN_CLAMPED(4, 6) L(first_vec_x4): # if VEC_SIZE == 64 /* If VEC_SIZE == 64 we can fit logic for full return label in spare bytes before next cache line. */ bsf %VRDX, %VRDX sub %eax, %esi leal (CHAR_PER_VEC * 3)(%rsi, %rdx), %eax ret P2ALIGN_CLAMPED(4, 6) # else addl $CHAR_PER_VEC, %esi # endif L(first_vec_x3): bsf %VRDX, %VRDX sub %eax, %esi leal (CHAR_PER_VEC * 2)(%rsi, %rdx), %eax ret #endif P2ALIGN_CLAMPED(4, 11) L(loopend): /* We found a null terminator in one of the 4 vectors. */ /* Check the first vector. */ movq %rax, %r8 VPTESTN %VMM(1), %VMM(1), %k2 KMOV %k2, %VRCX bsf %rcx, %r8 cmpq $(CHAR_PER_VEC), %r8 jbe L(end_vec) /* Check the second vector. */ subq $(CHAR_PER_VEC), %rax movq %rax, %r8 KMOV %k0, %VRCX bsf %rcx, %r8 cmpq $(CHAR_PER_VEC), %r8 jbe L(end_vec) /* Check the third vector. */ subq $(CHAR_PER_VEC), %rax movq %rax, %r8 VPTESTN %VMM(3), %VMM(3), %k2 KMOV %k2, %VRCX bsf %rcx, %r8 cmpq $(CHAR_PER_VEC), %r8 jbe L(end_vec) /* It is in the fourth vector. */ subq $(CHAR_PER_VEC), %rax movq %rax, %r8 KMOV %k1, %VRCX bsf %rcx, %r8 P2ALIGN_CLAMPED(4, 3) L(end_vec): /* Get the number that has been processed. */ movq %rsi, %rcx subq %rax, %rcx /* Add that to the offset we found the null terminator at. */ leaq (%r8, %rcx), %rax /* Take the min of that and the limit. */ cmpq %rsi, %rax cmovnb %rsi, %rax ret P2ALIGN_CLAMPED(4, 11) L(crosses_page_boundary): /* Align data backwards to VEC_SIZE. */ shrl $20, %eax movq %rdi, %rcx andq $-VEC_SIZE, %rcx VPCMPEQ (%rcx), %VZERO, %k0 KMOV %k0, %VRCX #ifdef USE_AS_WCSLEN shrl $2, %eax andl $(CHAR_PER_VEC - 1), %eax #endif /* By this point rax contains number of bytes we need to skip. */ shrx %VRAX, %VRCX, %VRCX /* Calculates CHAR_PER_VEC - eax and stores in eax. */ negl %eax andl $(CHAR_PER_VEC - 1), %eax movq %rsi, %rdx bsf %VRCX, %VRDX cmpq %rax, %rdx ja L(cross_page_continue) /* The vector had a null terminator or we are at the limit. */ movl %edx, %eax cmpq %rdx, %rsi cmovb %esi, %eax ret END(STRNLEN) #endif