/* strnlen/wcsnlen optimized with 256/512-bit EVEX instructions.
Copyright (C) 2022-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include
#if ISA_SHOULD_BUILD (4)
# include
#ifdef USE_AS_WCSLEN
# define VPCMPEQ vpcmpeqd
# define VPTESTN vptestnmd
# define VPMINU vpminud
# define CHAR_SIZE 4
#else
# define VPCMPEQ vpcmpeqb
# define VPTESTN vptestnmb
# define VPMINU vpminub
# define CHAR_SIZE 1
#endif
#define XZERO VMM_128(0)
#define VZERO VMM(0)
#define PAGE_SIZE 4096
#define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
#if CHAR_PER_VEC == 32
# define SUB_SHORT(imm, reg) subb $(imm), %VGPR_SZ(reg, 8)
#else
# define SUB_SHORT(imm, reg) subl $(imm), %VGPR_SZ(reg, 32)
#endif
#ifdef USE_AS_WCSLEN
/* For wide-character, we care more about limitting code size
than optimally aligning targets, so just cap nop padding
reasonably low. */
# define P2ALIGN(...) .p2align 4,, 6
# define P2ALIGN_CLAMPED(...) P2ALIGN(__VA_ARGS__)
#else
# define P2ALIGN(x) .p2align x
# define P2ALIGN_CLAMPED(x, y) .p2align x,, y
#endif
.section SECTION(.text), "ax", @progbits
/* Aligning entry point to 64 byte, provides better performance for
one vector length string. */
ENTRY_P2ALIGN(STRNLEN, 6)
/* rdi is pointer to array, rsi is the upper limit. */
/* Check zero length. */
test %RSI_LP, %RSI_LP
jz L(zero)
#ifdef __ILP32__
/* Clear the upper 32 bits. */
movl %esi, %esi
#endif
vpxorq %XZERO, %XZERO, %XZERO
/* Check that we won't cross a page boundary with our first load. */
movl %edi, %eax
shll $20, %eax
cmpl $((PAGE_SIZE - VEC_SIZE) << 20), %eax
ja L(crosses_page_boundary)
/* Check the first VEC_SIZE bytes. Each bit in K0 represents a
null byte. */
VPCMPEQ (%rdi), %VZERO, %k0
KMOV %k0, %VRCX
/* If src (rcx) is zero, bsf does not change the result. NB:
Must use 64-bit bsf here so that upper bits of len are not
cleared. */
movq %rsi, %rax
bsfq %rcx, %rax
/* If rax > CHAR_PER_VEC then rcx must have been zero (no null
CHAR) and rsi must be > CHAR_PER_VEC. */
cmpq $CHAR_PER_VEC, %rax
ja L(more_1x_vec)
/* Check if first match in bounds. */
cmpq %rax, %rsi
cmovb %esi, %eax
ret
#if VEC_SIZE == 32
P2ALIGN_CLAMPED(4, 2)
L(zero):
L(max_0):
movl %esi, %eax
ret
#endif
P2ALIGN_CLAMPED(4, 10)
L(more_1x_vec):
L(cross_page_continue):
/* After this calculation, rax stores the number of elements
left to be processed The complexity comes from the fact some
elements get read twice due to alignment and we need to be
sure we don't count them twice (else, it would just be rsi -
CHAR_PER_VEC). */
#ifdef USE_AS_WCSLEN
/* Need to compute directly for wcslen as CHAR_SIZE * rsi can
overflow. */
movq %rdi, %rax
andq $(VEC_SIZE * -1), %rdi
subq %rdi, %rax
sarq $2, %rax
leaq -(CHAR_PER_VEC * 1)(%rax, %rsi), %rax
#else
/* Calculate ptr + N - VEC_SIZE, then mask off the low bits,
then subtract ptr to get the new aligned limit value. */
leaq (VEC_SIZE * -1)(%rsi, %rdi), %rax
andq $(VEC_SIZE * -1), %rdi
subq %rdi, %rax
#endif
VPCMPEQ VEC_SIZE(%rdi), %VZERO, %k0
/* Checking here is faster for 256-bit but not 512-bit */
#if VEC_SIZE == 0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(last_vec_check)
#endif
cmpq $(CHAR_PER_VEC * 2), %rax
ja L(more_2x_vec)
L(last_2x_vec_or_less):
/* Checking here is faster for 512-bit but not 256-bit */
#if VEC_SIZE != 0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(last_vec_check)
#endif
/* Check for the end of data. */
SUB_SHORT (CHAR_PER_VEC, rax)
jbe L(max_0)
/* Check the final remaining vector. */
VPCMPEQ (VEC_SIZE * 2)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
#if VEC_SIZE == 32
jz L(max_0)
#else
jnz L(last_vec_check)
P2ALIGN_CLAMPED(4, 2)
L(zero):
L(max_0):
movl %esi, %eax
ret
#endif
P2ALIGN_CLAMPED(4, 4)
L(last_vec_check):
bsf %VRDX, %VRDX
sub %eax, %edx
lea (%rsi, %rdx), %eax
cmovae %esi, %eax
ret
#if VEC_SIZE == 32
P2ALIGN_CLAMPED(4, 8)
#endif
L(last_4x_vec_or_less):
addl $(CHAR_PER_VEC * -4), %eax
VPCMPEQ (VEC_SIZE * 5)(%rdi), %VZERO, %k0
#if VEC_SIZE == 64
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(last_vec_check)
#endif
subq $(VEC_SIZE * -4), %rdi
cmpl $(CHAR_PER_VEC * 2), %eax
jbe L(last_2x_vec_or_less)
P2ALIGN_CLAMPED(4, 6)
L(more_2x_vec):
/* Remaining length >= 2 * CHAR_PER_VEC so do VEC0/VEC1 without
rechecking bounds. */
/* Already checked in 256-bit case */
#if VEC_SIZE != 0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(first_vec_x1)
#endif
VPCMPEQ (VEC_SIZE * 2)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(first_vec_x2)
cmpq $(CHAR_PER_VEC * 4), %rax
ja L(more_4x_vec)
VPCMPEQ (VEC_SIZE * 3)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
addl $(CHAR_PER_VEC * -2), %eax
test %VRDX, %VRDX
jnz L(last_vec_check)
subb $(CHAR_PER_VEC), %al
jbe L(max_1)
VPCMPEQ (VEC_SIZE * 4)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(last_vec_check)
L(max_1):
movl %esi, %eax
ret
P2ALIGN_CLAMPED(4, 14)
L(first_vec_x2):
#if VEC_SIZE == 64
/* If VEC_SIZE == 64 we can fit logic for full return label in
spare bytes before next cache line. */
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 1)(%rsi, %rdx), %eax
ret
P2ALIGN_CLAMPED(4, 6)
#else
addl $CHAR_PER_VEC, %esi
#endif
L(first_vec_x1):
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 0)(%rsi, %rdx), %eax
ret
#if VEC_SIZE == 64
P2ALIGN_CLAMPED(4, 6)
L(first_vec_x4):
# if VEC_SIZE == 64
/* If VEC_SIZE == 64 we can fit logic for full return label in
spare bytes before next cache line. */
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 3)(%rsi, %rdx), %eax
ret
P2ALIGN_CLAMPED(4, 6)
# else
addl $CHAR_PER_VEC, %esi
# endif
L(first_vec_x3):
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 2)(%rsi, %rdx), %eax
ret
#endif
P2ALIGN_CLAMPED(6, 20)
L(more_4x_vec):
VPCMPEQ (VEC_SIZE * 3)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(first_vec_x3)
VPCMPEQ (VEC_SIZE * 4)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(first_vec_x4)
/* Check if at last VEC_SIZE * 4 length before aligning for the
loop. */
cmpq $(CHAR_PER_VEC * 8), %rax
jbe L(last_4x_vec_or_less)
/* Compute number of words checked after aligning. */
#ifdef USE_AS_WCSLEN
/* Need to compute directly for wcslen as CHAR_SIZE * rsi can
overflow. */
leaq (VEC_SIZE * -3)(%rdi), %rdx
#else
leaq (VEC_SIZE * -3)(%rdi, %rax), %rax
#endif
subq $(VEC_SIZE * -1), %rdi
/* Align data to VEC_SIZE * 4. */
#if VEC_SIZE == 64
/* Saves code size. No evex512 processor has partial register
stalls. If that change this can be replaced with `andq
$-(VEC_SIZE * 4), %rdi`. */
xorb %dil, %dil
#else
andq $-(VEC_SIZE * 4), %rdi
#endif
#ifdef USE_AS_WCSLEN
subq %rdi, %rdx
sarq $2, %rdx
addq %rdx, %rax
#else
subq %rdi, %rax
#endif
// mov %rdi, %rdx
P2ALIGN(6)
L(loop):
/* VPMINU and VPCMP combination provide better performance as
compared to alternative combinations. */
VMOVA (VEC_SIZE * 4)(%rdi), %VMM(1)
VPMINU (VEC_SIZE * 5)(%rdi), %VMM(1), %VMM(2)
VMOVA (VEC_SIZE * 6)(%rdi), %VMM(3)
VPMINU (VEC_SIZE * 7)(%rdi), %VMM(3), %VMM(4)
VPTESTN %VMM(2), %VMM(2), %k0
VPTESTN %VMM(4), %VMM(4), %k1
subq $-(VEC_SIZE * 4), %rdi
KORTEST %k0, %k1
jnz L(loopend)
subq $(CHAR_PER_VEC * 4), %rax
ja L(loop)
mov %rsi, %rax
ret
#if VEC_SIZE == 32
P2ALIGN_CLAMPED(4, 6)
L(first_vec_x4):
# if VEC_SIZE == 64
/* If VEC_SIZE == 64 we can fit logic for full return label in
spare bytes before next cache line. */
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 3)(%rsi, %rdx), %eax
ret
P2ALIGN_CLAMPED(4, 6)
# else
addl $CHAR_PER_VEC, %esi
# endif
L(first_vec_x3):
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 2)(%rsi, %rdx), %eax
ret
#endif
P2ALIGN_CLAMPED(4, 11)
L(loopend):
/* We found a null terminator in one of the 4 vectors. */
/* Check the first vector. */
movq %rax, %r8
VPTESTN %VMM(1), %VMM(1), %k2
KMOV %k2, %VRCX
bsf %rcx, %r8
cmpq $(CHAR_PER_VEC), %r8
jbe L(end_vec)
/* Check the second vector. */
subq $(CHAR_PER_VEC), %rax
movq %rax, %r8
KMOV %k0, %VRCX
bsf %rcx, %r8
cmpq $(CHAR_PER_VEC), %r8
jbe L(end_vec)
/* Check the third vector. */
subq $(CHAR_PER_VEC), %rax
movq %rax, %r8
VPTESTN %VMM(3), %VMM(3), %k2
KMOV %k2, %VRCX
bsf %rcx, %r8
cmpq $(CHAR_PER_VEC), %r8
jbe L(end_vec)
/* It is in the fourth vector. */
subq $(CHAR_PER_VEC), %rax
movq %rax, %r8
KMOV %k1, %VRCX
bsf %rcx, %r8
P2ALIGN_CLAMPED(4, 3)
L(end_vec):
/* Get the number that has been processed. */
movq %rsi, %rcx
subq %rax, %rcx
/* Add that to the offset we found the null terminator at. */
leaq (%r8, %rcx), %rax
/* Take the min of that and the limit. */
cmpq %rsi, %rax
cmovnb %rsi, %rax
ret
P2ALIGN_CLAMPED(4, 11)
L(crosses_page_boundary):
/* Align data backwards to VEC_SIZE. */
shrl $20, %eax
movq %rdi, %rcx
andq $-VEC_SIZE, %rcx
VPCMPEQ (%rcx), %VZERO, %k0
KMOV %k0, %VRCX
#ifdef USE_AS_WCSLEN
shrl $2, %eax
andl $(CHAR_PER_VEC - 1), %eax
#endif
/* By this point rax contains number of bytes we need to skip. */
shrx %VRAX, %VRCX, %VRCX
/* Calculates CHAR_PER_VEC - eax and stores in eax. */
negl %eax
andl $(CHAR_PER_VEC - 1), %eax
movq %rsi, %rdx
bsf %VRCX, %VRDX
cmpq %rax, %rdx
ja L(cross_page_continue)
/* The vector had a null terminator or we are at the limit. */
movl %edx, %eax
cmpq %rdx, %rsi
cmovb %esi, %eax
ret
END(STRNLEN)
#endif