/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001, 2011 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /*********************************************************************/ /* */ /* MODULE_NAME:ulog.c */ /* */ /* FUNCTION:ulog */ /* */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */ /* mpexp.c mplog.c mpa.c */ /* ulog.tbl */ /* */ /* An ultimate log routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of log(x). */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /*********************************************************************/ #include "endian.h" #include "dla.h" #include "mpa.h" #include "MathLib.h" #include "math_private.h" void __mplog(mp_no *, mp_no *, int); /*********************************************************************/ /* An ultimate log routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of log(x). */ /*********************************************************************/ double __ieee754_log(double x) { #define M 4 static const int pr[M]={8,10,18,32}; int i,j,n,ux,dx,p; #if 0 int k; #endif double dbl_n,u,p0,q,r0,w,nln2a,luai,lubi,lvaj,lvbj, sij,ssij,ttij,A,B,B0,y,y1,y2,polI,polII,sa,sb, t1,t2,t7,t8,t,ra,rb,ww, a0,aa0,s1,s2,ss2,s3,ss3,a1,aa1,a,aa,b,bb,c; #ifndef DLA_FMA double t3,t4,t5,t6; #endif number num; mp_no mpx,mpy,mpy1,mpy2,mperr; #include "ulog.tbl" #include "ulog.h" /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */ num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; n=0; if (__builtin_expect(ux < 0x00100000, 0)) { if (__builtin_expect(((ux & 0x7fffffff) | dx) == 0, 0)) return MHALF/ZERO; /* return -INF */ if (__builtin_expect(ux < 0, 0)) return (x-x)/ZERO; /* return NaN */ n -= 54; x *= two54.d; /* scale x */ num.d = x; } if (__builtin_expect(ux >= 0x7ff00000, 0)) return x+x; /* INF or NaN */ /* Regular values of x */ w = x-ONE; if (__builtin_expect(ABS(w) > U03, 1)) { goto case_03; } /*--- Stage I, the case abs(x-1) < 0.03 */ t8 = MHALF*w; EMULV(t8,w,a,aa,t1,t2,t3,t4,t5) EADD(w,a,b,bb) /* Evaluate polynomial II */ polII = (b0.d+w*(b1.d+w*(b2.d+w*(b3.d+w*(b4.d+ w*(b5.d+w*(b6.d+w*(b7.d+w*b8.d))))))))*w*w*w; c = (aa+bb)+polII; /* End stage I, case abs(x-1) < 0.03 */ if ((y=b+(c+b*E2)) == b+(c-b*E2)) return y; /*--- Stage II, the case abs(x-1) < 0.03 */ a = d11.d+w*(d12.d+w*(d13.d+w*(d14.d+w*(d15.d+w*(d16.d+ w*(d17.d+w*(d18.d+w*(d19.d+w*d20.d)))))))); EMULV(w,a,s2,ss2,t1,t2,t3,t4,t5) ADD2(d10.d,dd10.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(d9.d,dd9.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(d8.d,dd8.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(d7.d,dd7.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(d6.d,dd6.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(d5.d,dd5.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(d4.d,dd4.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(d3.d,dd3.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(d2.d,dd2.d,s2,ss2,s3,ss3,t1,t2) MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(w,ZERO,s2,ss2,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(w,ZERO, s3,ss3, b, bb,t1,t2) /* End stage II, case abs(x-1) < 0.03 */ if ((y=b+(bb+b*E4)) == b+(bb-b*E4)) return y; goto stage_n; /*--- Stage I, the case abs(x-1) > 0.03 */ case_03: /* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */ n += (num.i[HIGH_HALF] >> 20) - 1023; num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000; if (num.d > SQRT_2) { num.d *= HALF; n++; } u = num.d; dbl_n = (double) n; /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */ num.d += h1.d; i = (num.i[HIGH_HALF] & 0x000fffff) >> 12; /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */ num.d = u*Iu[i].d + h2.d; j = (num.i[HIGH_HALF] & 0x000fffff) >> 4; /* Compute w=(u-ui*vj)/(ui*vj) */ p0=(ONE+(i-75)*DEL_U)*(ONE+(j-180)*DEL_V); q=u-p0; r0=Iu[i].d*Iv[j].d; w=q*r0; /* Evaluate polynomial I */ polI = w+(a2.d+a3.d*w)*w*w; /* Add up everything */ nln2a = dbl_n*LN2A; luai = Lu[i][0].d; lubi = Lu[i][1].d; lvaj = Lv[j][0].d; lvbj = Lv[j][1].d; EADD(luai,lvaj,sij,ssij) EADD(nln2a,sij,A ,ttij) B0 = (((lubi+lvbj)+ssij)+ttij)+dbl_n*LN2B; B = polI+B0; /* End stage I, case abs(x-1) >= 0.03 */ if ((y=A+(B+E1)) == A+(B-E1)) return y; /*--- Stage II, the case abs(x-1) > 0.03 */ /* Improve the accuracy of r0 */ EMULV(p0,r0,sa,sb,t1,t2,t3,t4,t5) t=r0*((ONE-sa)-sb); EADD(r0,t,ra,rb) /* Compute w */ MUL2(q,ZERO,ra,rb,w,ww,t1,t2,t3,t4,t5,t6,t7,t8) EADD(A,B0,a0,aa0) /* Evaluate polynomial III */ s1 = (c3.d+(c4.d+c5.d*w)*w)*w; EADD(c2.d,s1,s2,ss2) MUL2(s2,ss2,w,ww,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(s3,ss3,w,ww,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(s2,ss2,w,ww,s3,ss3,t1,t2) ADD2(s3,ss3,a0,aa0,a1,aa1,t1,t2) /* End stage II, case abs(x-1) >= 0.03 */ if ((y=a1+(aa1+E3)) == a1+(aa1-E3)) return y; /* Final stages. Use multi-precision arithmetic. */ stage_n: for (i=0; i