glibc/nptl/pthread_mutex_timedlock.c
Torvald Riegel 353683a22e Robust mutexes: Fix lost wake-up.
Assume that Thread 1 waits to acquire a robust mutex using futexes to
block (and thus sets the FUTEX_WAITERS flag), and is unblocked when this
mutex is released.  If Thread 2 concurrently acquires the lock and is
killed, Thread 1 can recover from the died owner but fail to restore the
FUTEX_WAITERS flag.  This can lead to a Thread 3 that also blocked using
futexes at the same time as Thread 1 to not get woken up because
FUTEX_WAITERS is not set anymore.

The fix for this is to ensure that we continue to preserve the
FUTEX_WAITERS flag whenever we may have set it or shared it with another
thread.  This is the same requirement as in the algorithm for normal
mutexes, only that the robust mutexes need additional handling for died
owners and thus preserving the FUTEX_WAITERS flag cannot be done just in
the futex slowpath code.

	[BZ #20973]
	* nptl/pthread_mutex_lock.c (__pthread_mutex_lock_full): Fix lost
	wake-up in robust mutexes.
	* nptl/pthread_mutex_timedlock.c (pthread_mutex_timedlock): Likewise.
2016-12-19 20:12:15 +01:00

533 lines
14 KiB
C

/* Copyright (C) 2002-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <errno.h>
#include <time.h>
#include <sys/param.h>
#include <sys/time.h>
#include "pthreadP.h"
#include <atomic.h>
#include <lowlevellock.h>
#include <not-cancel.h>
#include <stap-probe.h>
#ifndef lll_timedlock_elision
#define lll_timedlock_elision(a,dummy,b,c) lll_timedlock(a, b, c)
#endif
#ifndef lll_trylock_elision
#define lll_trylock_elision(a,t) lll_trylock(a)
#endif
#ifndef FORCE_ELISION
#define FORCE_ELISION(m, s)
#endif
int
pthread_mutex_timedlock (pthread_mutex_t *mutex,
const struct timespec *abstime)
{
int oldval;
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
int result = 0;
LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime);
/* We must not check ABSTIME here. If the thread does not block
abstime must not be checked for a valid value. */
switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex),
PTHREAD_MUTEX_TIMED_NP))
{
/* Recursive mutex. */
case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP:
case PTHREAD_MUTEX_RECURSIVE_NP:
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
goto out;
}
/* We have to get the mutex. */
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
if (result != 0)
goto out;
/* Only locked once so far. */
mutex->__data.__count = 1;
break;
/* Error checking mutex. */
case PTHREAD_MUTEX_ERRORCHECK_NP:
/* Check whether we already hold the mutex. */
if (__glibc_unlikely (mutex->__data.__owner == id))
return EDEADLK;
/* Don't do lock elision on an error checking mutex. */
goto simple;
case PTHREAD_MUTEX_TIMED_NP:
FORCE_ELISION (mutex, goto elision);
simple:
/* Normal mutex. */
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
break;
case PTHREAD_MUTEX_TIMED_ELISION_NP:
elision: __attribute__((unused))
/* Don't record ownership */
return lll_timedlock_elision (mutex->__data.__lock,
mutex->__data.__spins,
abstime,
PTHREAD_MUTEX_PSHARED (mutex));
case PTHREAD_MUTEX_ADAPTIVE_NP:
if (! __is_smp)
goto simple;
if (lll_trylock (mutex->__data.__lock) != 0)
{
int cnt = 0;
int max_cnt = MIN (MAX_ADAPTIVE_COUNT,
mutex->__data.__spins * 2 + 10);
do
{
if (cnt++ >= max_cnt)
{
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
break;
}
atomic_spin_nop ();
}
while (lll_trylock (mutex->__data.__lock) != 0);
mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
}
break;
case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
&mutex->__data.__list.__next);
oldval = mutex->__data.__lock;
/* This is set to FUTEX_WAITERS iff we might have shared the
FUTEX_WAITERS flag with other threads, and therefore need to keep it
set to avoid lost wake-ups. We have the same requirement in the
simple mutex algorithm. */
unsigned int assume_other_futex_waiters = 0;
do
{
again:
if ((oldval & FUTEX_OWNER_DIED) != 0)
{
/* The previous owner died. Try locking the mutex. */
int newval = id | (oldval & FUTEX_WAITERS)
| assume_other_futex_waiters;
newval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
newval, oldval);
if (newval != oldval)
{
oldval = newval;
goto again;
}
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
ENQUEUE_MUTEX (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old
owner has to be discounted. */
return EOWNERDEAD;
}
/* Check whether we already hold the mutex. */
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
{
int kind = PTHREAD_MUTEX_TYPE (mutex);
if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
result = lll_robust_timedlock (mutex->__data.__lock, abstime,
id | assume_other_futex_waiters,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
/* See above. We set FUTEX_WAITERS and might have shared this flag
with other threads; thus, we need to preserve it. */
assume_other_futex_waiters = FUTEX_WAITERS;
if (__builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
lll_unlock (mutex->__data.__lock,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
if (result == ETIMEDOUT || result == EINVAL)
goto out;
oldval = result;
}
while ((oldval & FUTEX_OWNER_DIED) != 0);
mutex->__data.__count = 1;
ENQUEUE_MUTEX (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
break;
/* The PI support requires the Linux futex system call. If that's not
available, pthread_mutex_init should never have allowed the type to
be set. So it will get the default case for an invalid type. */
#ifdef __NR_futex
case PTHREAD_MUTEX_PI_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_NORMAL_NP:
case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
{
int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
if (robust)
/* Note: robust PI futexes are signaled by setting bit 0. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
(void *) (((uintptr_t) &mutex->__data.__list.__next)
| 1));
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
id, 0);
if (oldval != 0)
{
/* The mutex is locked. The kernel will now take care of
everything. The timeout value must be a relative value.
Convert it. */
int private = (robust
? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
: PTHREAD_MUTEX_PSHARED (mutex));
INTERNAL_SYSCALL_DECL (__err);
int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
__lll_private_flag (FUTEX_LOCK_PI,
private), 1,
abstime);
if (INTERNAL_SYSCALL_ERROR_P (e, __err))
{
if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT)
return ETIMEDOUT;
if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH
|| INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)
{
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK
|| (kind != PTHREAD_MUTEX_ERRORCHECK_NP
&& kind != PTHREAD_MUTEX_RECURSIVE_NP));
/* ESRCH can happen only for non-robust PI mutexes where
the owner of the lock died. */
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH
|| !robust);
/* Delay the thread until the timeout is reached.
Then return ETIMEDOUT. */
struct timespec reltime;
struct timespec now;
INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME,
&now);
reltime.tv_sec = abstime->tv_sec - now.tv_sec;
reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec;
if (reltime.tv_nsec < 0)
{
reltime.tv_nsec += 1000000000;
--reltime.tv_sec;
}
if (reltime.tv_sec >= 0)
while (nanosleep_not_cancel (&reltime, &reltime) != 0)
continue;
return ETIMEDOUT;
}
return INTERNAL_SYSCALL_ERRNO (e, __err);
}
oldval = mutex->__data.__lock;
assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
}
if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED))
{
atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
ENQUEUE_MUTEX_PI (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old owner
has to be discounted. */
return EOWNERDEAD;
}
if (robust
&& __builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
INTERNAL_SYSCALL_DECL (__err);
INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
__lll_private_flag (FUTEX_UNLOCK_PI,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex)),
0, 0);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
mutex->__data.__count = 1;
if (robust)
{
ENQUEUE_MUTEX_PI (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
}
}
break;
#endif /* __NR_futex. */
case PTHREAD_MUTEX_PP_RECURSIVE_NP:
case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
case PTHREAD_MUTEX_PP_NORMAL_NP:
case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
{
int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
return EDEADLK;
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
int oldprio = -1, ceilval;
do
{
int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
>> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
if (__pthread_current_priority () > ceiling)
{
result = EINVAL;
failpp:
if (oldprio != -1)
__pthread_tpp_change_priority (oldprio, -1);
return result;
}
result = __pthread_tpp_change_priority (oldprio, ceiling);
if (result)
return result;
ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
oldprio = ceiling;
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 1, ceilval);
if (oldval == ceilval)
break;
do
{
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2,
ceilval | 1);
if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
break;
if (oldval != ceilval)
{
/* Reject invalid timeouts. */
if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
{
result = EINVAL;
goto failpp;
}
struct timeval tv;
struct timespec rt;
/* Get the current time. */
(void) __gettimeofday (&tv, NULL);
/* Compute relative timeout. */
rt.tv_sec = abstime->tv_sec - tv.tv_sec;
rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
if (rt.tv_nsec < 0)
{
rt.tv_nsec += 1000000000;
--rt.tv_sec;
}
/* Already timed out? */
if (rt.tv_sec < 0)
{
result = ETIMEDOUT;
goto failpp;
}
lll_futex_timed_wait (&mutex->__data.__lock,
ceilval | 2, &rt,
PTHREAD_MUTEX_PSHARED (mutex));
}
}
while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2, ceilval)
!= ceilval);
}
while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
assert (mutex->__data.__owner == 0);
mutex->__data.__count = 1;
}
break;
default:
/* Correct code cannot set any other type. */
return EINVAL;
}
if (result == 0)
{
/* Record the ownership. */
mutex->__data.__owner = id;
++mutex->__data.__nusers;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
}
out:
return result;
}