mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-27 05:00:15 +00:00
1033 lines
28 KiB
C
1033 lines
28 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2016 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/****************************************************************************/
|
|
/* */
|
|
/* MODULE_NAME:usncs.c */
|
|
/* */
|
|
/* FUNCTIONS: usin */
|
|
/* ucos */
|
|
/* slow */
|
|
/* slow1 */
|
|
/* slow2 */
|
|
/* sloww */
|
|
/* sloww1 */
|
|
/* sloww2 */
|
|
/* bsloww */
|
|
/* bsloww1 */
|
|
/* bsloww2 */
|
|
/* cslow2 */
|
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
|
|
/* branred.c sincos32.c dosincos.c mpa.c */
|
|
/* sincos.tbl */
|
|
/* */
|
|
/* An ultimate sin and routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/****************************************************************************/
|
|
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include "endian.h"
|
|
#include "mydefs.h"
|
|
#include "usncs.h"
|
|
#include "MathLib.h"
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <fenv.h>
|
|
|
|
/* Helper macros to compute sin of the input values. */
|
|
#define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx))
|
|
|
|
#define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1)
|
|
|
|
/* The computed polynomial is a variation of the Taylor series expansion for
|
|
sin(a):
|
|
|
|
a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2
|
|
|
|
The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so
|
|
on. The result is returned to LHS and correction in COR. */
|
|
#define TAYLOR_SIN(xx, a, da, cor) \
|
|
({ \
|
|
double t = ((POLYNOMIAL (xx) * (a) - 0.5 * (da)) * (xx) + (da)); \
|
|
double res = (a) + t; \
|
|
(cor) = ((a) - res) + t; \
|
|
res; \
|
|
})
|
|
|
|
/* This is again a variation of the Taylor series expansion with the term
|
|
x^3/3! expanded into the following for better accuracy:
|
|
|
|
bb * x ^ 3 + 3 * aa * x * x1 * x2 + aa * x1 ^ 3 + aa * x2 ^ 3
|
|
|
|
The correction term is dx and bb + aa = -1/3!
|
|
*/
|
|
#define TAYLOR_SLOW(x0, dx, cor) \
|
|
({ \
|
|
static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ \
|
|
double xx = (x0) * (x0); \
|
|
double x1 = ((x0) + th2_36) - th2_36; \
|
|
double y = aa * x1 * x1 * x1; \
|
|
double r = (x0) + y; \
|
|
double x2 = ((x0) - x1) + (dx); \
|
|
double t = (((POLYNOMIAL2 (xx) + bb) * xx + 3.0 * aa * x1 * x2) \
|
|
* (x0) + aa * x2 * x2 * x2 + (dx)); \
|
|
t = (((x0) - r) + y) + t; \
|
|
double res = r + t; \
|
|
(cor) = (r - res) + t; \
|
|
res; \
|
|
})
|
|
|
|
#define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \
|
|
({ \
|
|
int4 k = u.i[LOW_HALF] << 2; \
|
|
sn = __sincostab.x[k]; \
|
|
ssn = __sincostab.x[k + 1]; \
|
|
cs = __sincostab.x[k + 2]; \
|
|
ccs = __sincostab.x[k + 3]; \
|
|
})
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
extern const union
|
|
{
|
|
int4 i[880];
|
|
double x[440];
|
|
} __sincostab attribute_hidden;
|
|
|
|
static const double
|
|
sn3 = -1.66666666666664880952546298448555E-01,
|
|
sn5 = 8.33333214285722277379541354343671E-03,
|
|
cs2 = 4.99999999999999999999950396842453E-01,
|
|
cs4 = -4.16666666666664434524222570944589E-02,
|
|
cs6 = 1.38888874007937613028114285595617E-03;
|
|
|
|
static const double t22 = 0x1.8p22;
|
|
|
|
void __dubsin (double x, double dx, double w[]);
|
|
void __docos (double x, double dx, double w[]);
|
|
double __mpsin (double x, double dx, bool reduce_range);
|
|
double __mpcos (double x, double dx, bool reduce_range);
|
|
static double slow (double x);
|
|
static double slow1 (double x);
|
|
static double slow2 (double x);
|
|
static double sloww (double x, double dx, double orig, int n);
|
|
static double sloww1 (double x, double dx, double orig, int m, int n);
|
|
static double sloww2 (double x, double dx, double orig, int n);
|
|
static double bsloww (double x, double dx, double orig, int n);
|
|
static double bsloww1 (double x, double dx, double orig, int n);
|
|
static double bsloww2 (double x, double dx, double orig, int n);
|
|
int __branred (double x, double *a, double *aa);
|
|
static double cslow2 (double x);
|
|
|
|
/* Given a number partitioned into U and X such that U is an index into the
|
|
sin/cos table, this macro computes the cosine of the number by combining
|
|
the sin and cos of X (as computed by a variation of the Taylor series) with
|
|
the values looked up from the sin/cos table to get the result in RES and a
|
|
correction value in COR. */
|
|
static double
|
|
do_cos (mynumber u, double x, double *corp)
|
|
{
|
|
double xx, s, sn, ssn, c, cs, ccs, res, cor;
|
|
xx = x * x;
|
|
s = x + x * xx * (sn3 + xx * sn5);
|
|
c = xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
cor = (ccs - s * ssn - cs * c) - sn * s;
|
|
res = cs + cor;
|
|
cor = (cs - res) + cor;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* A more precise variant of DO_COS where the number is partitioned into U, X
|
|
and DX. EPS is the adjustment to the correction COR. */
|
|
static double
|
|
do_cos_slow (mynumber u, double x, double dx, double eps, double *corp)
|
|
{
|
|
double xx, y, x1, x2, e1, e2, res, cor;
|
|
double s, sn, ssn, c, cs, ccs;
|
|
xx = x * x;
|
|
s = x * xx * (sn3 + xx * sn5);
|
|
c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
x1 = (x + t22) - t22;
|
|
x2 = (x - x1) + dx;
|
|
e1 = (sn + t22) - t22;
|
|
e2 = (sn - e1) + ssn;
|
|
cor = (ccs - cs * c - e1 * x2 - e2 * x) - sn * s;
|
|
y = cs - e1 * x1;
|
|
cor = cor + ((cs - y) - e1 * x1);
|
|
res = y + cor;
|
|
cor = (y - res) + cor;
|
|
if (cor > 0)
|
|
cor = 1.0005 * cor + eps;
|
|
else
|
|
cor = 1.0005 * cor - eps;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* Given a number partitioned into U and X and DX such that U is an index into
|
|
the sin/cos table, this macro computes the sine of the number by combining
|
|
the sin and cos of X (as computed by a variation of the Taylor series) with
|
|
the values looked up from the sin/cos table to get the result in RES and a
|
|
correction value in COR. */
|
|
static double
|
|
do_sin (mynumber u, double x, double dx, double *corp)
|
|
{
|
|
double xx, s, sn, ssn, c, cs, ccs, cor, res;
|
|
xx = x * x;
|
|
s = x + (dx + x * xx * (sn3 + xx * sn5));
|
|
c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
cor = (ssn + s * ccs - sn * c) + cs * s;
|
|
res = sn + cor;
|
|
cor = (sn - res) + cor;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* A more precise variant of res = do_sin where the number is partitioned into U, X
|
|
and DX. EPS is the adjustment to the correction COR. */
|
|
static double
|
|
do_sin_slow (mynumber u, double x, double dx, double eps, double *corp)
|
|
{
|
|
double xx, y, x1, x2, c1, c2, res, cor;
|
|
double s, sn, ssn, c, cs, ccs;
|
|
xx = x * x;
|
|
s = x * xx * (sn3 + xx * sn5);
|
|
c = xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
x1 = (x + t22) - t22;
|
|
x2 = (x - x1) + dx;
|
|
c1 = (cs + t22) - t22;
|
|
c2 = (cs - c1) + ccs;
|
|
cor = (ssn + s * ccs + cs * s + c2 * x + c1 * x2 - sn * x * dx) - sn * c;
|
|
y = sn + c1 * x1;
|
|
cor = cor + ((sn - y) + c1 * x1);
|
|
res = y + cor;
|
|
cor = (y - res) + cor;
|
|
if (cor > 0)
|
|
cor = 1.0005 * cor + eps;
|
|
else
|
|
cor = 1.0005 * cor - eps;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* Reduce range of X and compute sin of a + da. K is the amount by which to
|
|
rotate the quadrants. This allows us to use the same routine to compute cos
|
|
by simply rotating the quadrants by 1. */
|
|
static inline double
|
|
__always_inline
|
|
reduce_and_compute (double x, unsigned int k)
|
|
{
|
|
double retval = 0, a, da;
|
|
unsigned int n = __branred (x, &a, &da);
|
|
k = (n + k) % 4;
|
|
switch (k)
|
|
{
|
|
case 0:
|
|
if (a * a < 0.01588)
|
|
retval = bsloww (a, da, x, n);
|
|
else
|
|
retval = bsloww1 (a, da, x, n);
|
|
break;
|
|
case 2:
|
|
if (a * a < 0.01588)
|
|
retval = bsloww (-a, -da, x, n);
|
|
else
|
|
retval = bsloww1 (-a, -da, x, n);
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
retval = bsloww2 (a, da, x, n);
|
|
break;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static inline int4
|
|
__always_inline
|
|
reduce_sincos_1 (double x, double *a, double *da)
|
|
{
|
|
mynumber v;
|
|
|
|
double t = (x * hpinv + toint);
|
|
double xn = t - toint;
|
|
v.x = t;
|
|
double y = (x - xn * mp1) - xn * mp2;
|
|
int4 n = v.i[LOW_HALF] & 3;
|
|
double db = xn * mp3;
|
|
double b = y - db;
|
|
db = (y - b) - db;
|
|
|
|
*a = b;
|
|
*da = db;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Compute sin (A + DA). cos can be computed by shifting the quadrant N
|
|
clockwise. */
|
|
static double
|
|
__always_inline
|
|
do_sincos_1 (double a, double da, double x, int4 n, int4 k)
|
|
{
|
|
double xx, retval, res, cor, y;
|
|
mynumber u;
|
|
int m;
|
|
double eps = fabs (x) * 1.2e-30;
|
|
|
|
int k1 = (n + k) & 3;
|
|
switch (k1)
|
|
{ /* quarter of unit circle */
|
|
case 2:
|
|
a = -a;
|
|
da = -da;
|
|
case 0:
|
|
xx = a * a;
|
|
if (xx < 0.01588)
|
|
{
|
|
/* Taylor series. */
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
|
|
retval = (res == res + cor) ? res : sloww (a, da, x, k);
|
|
}
|
|
else
|
|
{
|
|
if (a > 0)
|
|
m = 1;
|
|
else
|
|
{
|
|
m = 0;
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big);
|
|
res = do_sin (u, y, da, &cor);
|
|
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
|
|
retval = ((res == res + cor) ? ((m) ? res : -res)
|
|
: sloww1 (a, da, x, m, k));
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
if (a < 0)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big) + da;
|
|
res = do_cos (u, y, &cor);
|
|
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
|
|
retval = ((res == res + cor) ? ((k1 & 2) ? -res : res)
|
|
: sloww2 (a, da, x, n));
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static inline int4
|
|
__always_inline
|
|
reduce_sincos_2 (double x, double *a, double *da)
|
|
{
|
|
mynumber v;
|
|
|
|
double t = (x * hpinv + toint);
|
|
double xn = t - toint;
|
|
v.x = t;
|
|
double xn1 = (xn + 8.0e22) - 8.0e22;
|
|
double xn2 = xn - xn1;
|
|
double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
|
|
int4 n = v.i[LOW_HALF] & 3;
|
|
double db = xn1 * pp3;
|
|
t = y - db;
|
|
db = (y - t) - db;
|
|
db = (db - xn2 * pp3) - xn * pp4;
|
|
double b = t + db;
|
|
db = (t - b) + db;
|
|
|
|
*a = b;
|
|
*da = db;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Compute sin (A + DA). cos can be computed by shifting the quadrant N
|
|
clockwise. */
|
|
static double
|
|
__always_inline
|
|
do_sincos_2 (double a, double da, double x, int4 n, int4 k)
|
|
{
|
|
double res, retval, cor, xx;
|
|
mynumber u;
|
|
|
|
double eps = 1.0e-24;
|
|
|
|
k = (n + k) & 3;
|
|
|
|
switch (k)
|
|
{
|
|
case 2:
|
|
a = -a;
|
|
da = -da;
|
|
/* Fall through. */
|
|
case 0:
|
|
xx = a * a;
|
|
if (xx < 0.01588)
|
|
{
|
|
/* Taylor series. */
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
|
|
retval = (res == res + cor) ? res : bsloww (a, da, x, n);
|
|
}
|
|
else
|
|
{
|
|
double t, db, y;
|
|
int m;
|
|
if (a > 0)
|
|
{
|
|
m = 1;
|
|
t = a;
|
|
db = da;
|
|
}
|
|
else
|
|
{
|
|
m = 0;
|
|
t = -a;
|
|
db = -da;
|
|
}
|
|
u.x = big + t;
|
|
y = t - (u.x - big);
|
|
res = do_sin (u, y, db, &cor);
|
|
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
|
|
retval = ((res == res + cor) ? ((m) ? res : -res)
|
|
: bsloww1 (a, da, x, n));
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
if (a < 0)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
double y = a - (u.x - big) + da;
|
|
res = do_cos (u, y, &cor);
|
|
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
|
|
retval = ((res == res + cor) ? ((n & 2) ? -res : res)
|
|
: bsloww2 (a, da, x, n));
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* An ultimate sin routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of sin(x) */
|
|
/*******************************************************************/
|
|
#ifdef IN_SINCOS
|
|
static double
|
|
#else
|
|
double
|
|
SECTION
|
|
#endif
|
|
__sin (double x)
|
|
{
|
|
double xx, res, t, cor, y, s, c, sn, ssn, cs, ccs;
|
|
mynumber u;
|
|
int4 k, m;
|
|
double retval = 0;
|
|
|
|
#ifndef IN_SINCOS
|
|
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
|
#endif
|
|
|
|
u.x = x;
|
|
m = u.i[HIGH_HALF];
|
|
k = 0x7fffffff & m; /* no sign */
|
|
if (k < 0x3e500000) /* if x->0 =>sin(x)=x */
|
|
{
|
|
math_check_force_underflow (x);
|
|
retval = x;
|
|
}
|
|
/*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/
|
|
else if (k < 0x3fd00000)
|
|
{
|
|
xx = x * x;
|
|
/* Taylor series. */
|
|
t = POLYNOMIAL (xx) * (xx * x);
|
|
res = x + t;
|
|
cor = (x - res) + t;
|
|
retval = (res == res + 1.07 * cor) ? res : slow (x);
|
|
} /* else if (k < 0x3fd00000) */
|
|
/*---------------------------- 0.25<|x|< 0.855469---------------------- */
|
|
else if (k < 0x3feb6000)
|
|
{
|
|
u.x = (m > 0) ? big + x : big - x;
|
|
y = (m > 0) ? x - (u.x - big) : x + (u.x - big);
|
|
xx = y * y;
|
|
s = y + y * xx * (sn3 + xx * sn5);
|
|
c = xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
if (m <= 0)
|
|
{
|
|
sn = -sn;
|
|
ssn = -ssn;
|
|
}
|
|
cor = (ssn + s * ccs - sn * c) + cs * s;
|
|
res = sn + cor;
|
|
cor = (sn - res) + cor;
|
|
retval = (res == res + 1.096 * cor) ? res : slow1 (x);
|
|
} /* else if (k < 0x3feb6000) */
|
|
|
|
/*----------------------- 0.855469 <|x|<2.426265 ----------------------*/
|
|
else if (k < 0x400368fd)
|
|
{
|
|
|
|
y = (m > 0) ? hp0 - x : hp0 + x;
|
|
if (y >= 0)
|
|
{
|
|
u.x = big + y;
|
|
y = (y - (u.x - big)) + hp1;
|
|
}
|
|
else
|
|
{
|
|
u.x = big - y;
|
|
y = (-hp1) - (y + (u.x - big));
|
|
}
|
|
res = do_cos (u, y, &cor);
|
|
retval = (res == res + 1.020 * cor) ? ((m > 0) ? res : -res) : slow2 (x);
|
|
} /* else if (k < 0x400368fd) */
|
|
|
|
#ifndef IN_SINCOS
|
|
/*-------------------------- 2.426265<|x|< 105414350 ----------------------*/
|
|
else if (k < 0x419921FB)
|
|
{
|
|
double a, da;
|
|
int4 n = reduce_sincos_1 (x, &a, &da);
|
|
retval = do_sincos_1 (a, da, x, n, 0);
|
|
} /* else if (k < 0x419921FB ) */
|
|
|
|
/*---------------------105414350 <|x|< 281474976710656 --------------------*/
|
|
else if (k < 0x42F00000)
|
|
{
|
|
double a, da;
|
|
|
|
int4 n = reduce_sincos_2 (x, &a, &da);
|
|
retval = do_sincos_2 (a, da, x, n, 0);
|
|
} /* else if (k < 0x42F00000 ) */
|
|
|
|
/* -----------------281474976710656 <|x| <2^1024----------------------------*/
|
|
else if (k < 0x7ff00000)
|
|
retval = reduce_and_compute (x, 0);
|
|
|
|
/*--------------------- |x| > 2^1024 ----------------------------------*/
|
|
else
|
|
{
|
|
if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
|
|
__set_errno (EDOM);
|
|
retval = x / x;
|
|
}
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*******************************************************************/
|
|
/* An ultimate cos routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of cos(x) */
|
|
/*******************************************************************/
|
|
|
|
#ifdef IN_SINCOS
|
|
static double
|
|
#else
|
|
double
|
|
SECTION
|
|
#endif
|
|
__cos (double x)
|
|
{
|
|
double y, xx, res, cor, a, da;
|
|
mynumber u;
|
|
int4 k, m;
|
|
|
|
double retval = 0;
|
|
|
|
#ifndef IN_SINCOS
|
|
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
|
#endif
|
|
|
|
u.x = x;
|
|
m = u.i[HIGH_HALF];
|
|
k = 0x7fffffff & m;
|
|
|
|
/* |x|<2^-27 => cos(x)=1 */
|
|
if (k < 0x3e400000)
|
|
retval = 1.0;
|
|
|
|
else if (k < 0x3feb6000)
|
|
{ /* 2^-27 < |x| < 0.855469 */
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
res = do_cos (u, y, &cor);
|
|
retval = (res == res + 1.020 * cor) ? res : cslow2 (x);
|
|
} /* else if (k < 0x3feb6000) */
|
|
|
|
else if (k < 0x400368fd)
|
|
{ /* 0.855469 <|x|<2.426265 */ ;
|
|
y = hp0 - fabs (x);
|
|
a = y + hp1;
|
|
da = (y - a) + hp1;
|
|
xx = a * a;
|
|
if (xx < 0.01588)
|
|
{
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = (cor > 0) ? 1.02 * cor + 1.0e-31 : 1.02 * cor - 1.0e-31;
|
|
retval = (res == res + cor) ? res : sloww (a, da, x, 1);
|
|
}
|
|
else
|
|
{
|
|
if (a > 0)
|
|
{
|
|
m = 1;
|
|
}
|
|
else
|
|
{
|
|
m = 0;
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
u.x = big + a;
|
|
y = a - (u.x - big);
|
|
res = do_sin (u, y, da, &cor);
|
|
cor = (cor > 0) ? 1.035 * cor + 1.0e-31 : 1.035 * cor - 1.0e-31;
|
|
retval = ((res == res + cor) ? ((m) ? res : -res)
|
|
: sloww1 (a, da, x, m, 1));
|
|
}
|
|
|
|
} /* else if (k < 0x400368fd) */
|
|
|
|
|
|
#ifndef IN_SINCOS
|
|
else if (k < 0x419921FB)
|
|
{ /* 2.426265<|x|< 105414350 */
|
|
double a, da;
|
|
int4 n = reduce_sincos_1 (x, &a, &da);
|
|
retval = do_sincos_1 (a, da, x, n, 1);
|
|
} /* else if (k < 0x419921FB ) */
|
|
|
|
else if (k < 0x42F00000)
|
|
{
|
|
double a, da;
|
|
|
|
int4 n = reduce_sincos_2 (x, &a, &da);
|
|
retval = do_sincos_2 (a, da, x, n, 1);
|
|
} /* else if (k < 0x42F00000 ) */
|
|
|
|
/* 281474976710656 <|x| <2^1024 */
|
|
else if (k < 0x7ff00000)
|
|
retval = reduce_and_compute (x, 1);
|
|
|
|
else
|
|
{
|
|
if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
|
|
__set_errno (EDOM);
|
|
retval = x / x; /* |x| > 2^1024 */
|
|
}
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */
|
|
/* precision and if still doesn't accurate enough by mpsin or dubsin */
|
|
/************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
slow (double x)
|
|
{
|
|
double res, cor, w[2];
|
|
res = TAYLOR_SLOW (x, 0, cor);
|
|
if (res == res + 1.0007 * cor)
|
|
return res;
|
|
|
|
__dubsin (fabs (x), 0, w);
|
|
if (w[0] == w[0] + 1.000000001 * w[1])
|
|
return (x > 0) ? w[0] : -w[0];
|
|
|
|
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
|
}
|
|
|
|
/*******************************************************************************/
|
|
/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */
|
|
/* and if result still doesn't accurate enough by mpsin or dubsin */
|
|
/*******************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
slow1 (double x)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
res = do_sin_slow (u, y, 0, 0, &cor);
|
|
if (res == res + cor)
|
|
return (x > 0) ? res : -res;
|
|
|
|
__dubsin (fabs (x), 0, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return (x > 0) ? w[0] : -w[0];
|
|
|
|
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by __sincostab.tbl */
|
|
/* and if result still doesn't accurate enough by mpsin or dubsin */
|
|
/**************************************************************************/
|
|
static double
|
|
SECTION
|
|
slow2 (double x)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, y1, y2, cor, res, del;
|
|
|
|
y = fabs (x);
|
|
y = hp0 - y;
|
|
if (y >= 0)
|
|
{
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
del = hp1;
|
|
}
|
|
else
|
|
{
|
|
u.x = big - y;
|
|
y = -(y + (u.x - big));
|
|
del = -hp1;
|
|
}
|
|
res = do_cos_slow (u, y, del, 0, &cor);
|
|
if (res == res + cor)
|
|
return (x > 0) ? res : -res;
|
|
|
|
y = fabs (x) - hp0;
|
|
y1 = y - hp1;
|
|
y2 = (y - y1) - hp1;
|
|
__docos (y1, y2, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return (x > 0) ? w[0] : -w[0];
|
|
|
|
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x is small enough*/
|
|
/* to use Taylor series around zero and (x+dx) */
|
|
/* in first or third quarter of unit circle.Routine receive also */
|
|
/* (right argument) the original value of x for computing error of */
|
|
/* result.And if result not accurate enough routine calls mpsin1 or dubsin */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
sloww (double x, double dx, double orig, int k)
|
|
{
|
|
double y, t, res, cor, w[2], a, da, xn;
|
|
mynumber v;
|
|
int4 n;
|
|
res = TAYLOR_SLOW (x, dx, cor);
|
|
|
|
if (cor > 0)
|
|
cor = 1.0005 * cor + fabs (orig) * 3.1e-30;
|
|
else
|
|
cor = 1.0005 * cor - fabs (orig) * 3.1e-30;
|
|
|
|
if (res == res + cor)
|
|
return res;
|
|
|
|
(x > 0) ? __dubsin (x, dx, w) : __dubsin (-x, -dx, w);
|
|
if (w[1] > 0)
|
|
cor = 1.000000001 * w[1] + fabs (orig) * 1.1e-30;
|
|
else
|
|
cor = 1.000000001 * w[1] - fabs (orig) * 1.1e-30;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (x > 0) ? w[0] : -w[0];
|
|
|
|
t = (orig * hpinv + toint);
|
|
xn = t - toint;
|
|
v.x = t;
|
|
y = (orig - xn * mp1) - xn * mp2;
|
|
n = (v.i[LOW_HALF] + k) & 3;
|
|
da = xn * pp3;
|
|
t = y - da;
|
|
da = (y - t) - da;
|
|
y = xn * pp4;
|
|
a = t - y;
|
|
da = ((t - a) - y) + da;
|
|
|
|
if (n == 2 || n == 1)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
(a > 0) ? __dubsin (a, da, w) : __dubsin (-a, -da, w);
|
|
if (w[1] > 0)
|
|
cor = 1.000000001 * w[1] + fabs (orig) * 1.1e-40;
|
|
else
|
|
cor = 1.000000001 * w[1] - fabs (orig) * 1.1e-40;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (a > 0) ? w[0] : -w[0];
|
|
|
|
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x in first or */
|
|
/* third quarter of unit circle.Routine receive also (right argument) the */
|
|
/* original value of x for computing error of result.And if result not */
|
|
/* accurate enough routine calls mpsin1 or dubsin */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
sloww1 (double x, double dx, double orig, int m, int k)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
u.x = big + x;
|
|
y = x - (u.x - big);
|
|
res = do_sin_slow (u, y, dx, 3.1e-30 * fabs (orig), &cor);
|
|
|
|
if (res == res + cor)
|
|
return (m > 0) ? res : -res;
|
|
|
|
__dubsin (x, dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-30 * fabs (orig);
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-30 * fabs (orig);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (m > 0) ? w[0] : -w[0];
|
|
|
|
return (k == 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x in second or */
|
|
/* fourth quarter of unit circle.Routine receive also the original value */
|
|
/* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
|
|
/* accurate enough routine calls mpsin1 or dubsin */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
sloww2 (double x, double dx, double orig, int n)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
u.x = big + x;
|
|
y = x - (u.x - big);
|
|
res = do_cos_slow (u, y, dx, 3.1e-30 * fabs (orig), &cor);
|
|
|
|
if (res == res + cor)
|
|
return (n & 2) ? -res : res;
|
|
|
|
__docos (x, dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-30 * fabs (orig);
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-30 * fabs (orig);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (n & 2) ? -w[0] : w[0];
|
|
|
|
return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* is small enough to use Taylor series around zero and (x+dx) */
|
|
/* in first or third quarter of unit circle.Routine receive also */
|
|
/* (right argument) the original value of x for computing error of */
|
|
/* result.And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
bsloww (double x, double dx, double orig, int n)
|
|
{
|
|
double res, cor, w[2];
|
|
|
|
res = TAYLOR_SLOW (x, dx, cor);
|
|
cor = (cor > 0) ? 1.0005 * cor + 1.1e-24 : 1.0005 * cor - 1.1e-24;
|
|
if (res == res + cor)
|
|
return res;
|
|
|
|
(x > 0) ? __dubsin (x, dx, w) : __dubsin (-x, -dx, w);
|
|
if (w[1] > 0)
|
|
cor = 1.000000001 * w[1] + 1.1e-24;
|
|
else
|
|
cor = 1.000000001 * w[1] - 1.1e-24;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (x > 0) ? w[0] : -w[0];
|
|
|
|
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* in first or third quarter of unit circle.Routine receive also */
|
|
/* (right argument) the original value of x for computing error of result.*/
|
|
/* And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
bsloww1 (double x, double dx, double orig, int n)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
dx = (x > 0) ? dx : -dx;
|
|
res = do_sin_slow (u, y, dx, 1.1e-24, &cor);
|
|
if (res == res + cor)
|
|
return (x > 0) ? res : -res;
|
|
|
|
__dubsin (fabs (x), dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-24;
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-24;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (x > 0) ? w[0] : -w[0];
|
|
|
|
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* in second or fourth quarter of unit circle.Routine receive also the */
|
|
/* original value and quarter(n= 1or 3)of x for computing error of result. */
|
|
/* And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
bsloww2 (double x, double dx, double orig, int n)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
dx = (x > 0) ? dx : -dx;
|
|
res = do_cos_slow (u, y, dx, 1.1e-24, &cor);
|
|
if (res == res + cor)
|
|
return (n & 2) ? -res : res;
|
|
|
|
__docos (fabs (x), dx, w);
|
|
|
|
if (w[1] > 0)
|
|
cor = 1.000000005 * w[1] + 1.1e-24;
|
|
else
|
|
cor = 1.000000005 * w[1] - 1.1e-24;
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (n & 2) ? -w[0] : w[0];
|
|
|
|
return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more */
|
|
/* precision and if still doesn't accurate enough by mpcos or docos */
|
|
/************************************************************************/
|
|
|
|
static double
|
|
SECTION
|
|
cslow2 (double x)
|
|
{
|
|
mynumber u;
|
|
double w[2], y, cor, res;
|
|
|
|
y = fabs (x);
|
|
u.x = big + y;
|
|
y = y - (u.x - big);
|
|
res = do_cos_slow (u, y, 0, 0, &cor);
|
|
if (res == res + cor)
|
|
return res;
|
|
|
|
y = fabs (x);
|
|
__docos (y, 0, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return w[0];
|
|
|
|
return __mpcos (x, 0, false);
|
|
}
|
|
|
|
#ifndef __cos
|
|
weak_alias (__cos, cos)
|
|
# ifdef NO_LONG_DOUBLE
|
|
strong_alias (__cos, __cosl)
|
|
weak_alias (__cos, cosl)
|
|
# endif
|
|
#endif
|
|
#ifndef __sin
|
|
weak_alias (__sin, sin)
|
|
# ifdef NO_LONG_DOUBLE
|
|
strong_alias (__sin, __sinl)
|
|
weak_alias (__sin, sinl)
|
|
# endif
|
|
#endif
|