mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-08 02:10:18 +00:00
37550cb3d6
Similar to various other bugs in this area, some tan implementations do not raise the underflow exception for subnormal arguments, when the result is tiny and inexact. This patch forces the exception in a similar way to previous fixes. Tested for x86_64, x86, mips64 and powerpc. [BZ #16517] * sysdeps/ieee754/dbl-64/s_tan.c: Include <float.h>. (tan): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/flt-32/k_tanf.c: Include <float.h>. (__kernel_tanf): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/ldbl-128/k_tanl.c: Include <float.h>. (__kernel_tanl): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/ldbl-128ibm/k_tanl.c: Include <float.h>. (__kernel_tanl): Force underflow exception for arguments with small absolute value. * sysdeps/ieee754/ldbl-96/k_tanl.c: Include <float.h>. (__kernel_tanl): Force underflow exception for arguments with small absolute value. * math/auto-libm-test-in: Add more tests of tan. * math/auto-libm-test-out: Regenerated.
176 lines
5.3 KiB
C
176 lines
5.3 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/*
|
|
Long double expansions are
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
and are incorporated herein by permission of the author. The author
|
|
reserves the right to distribute this material elsewhere under different
|
|
copying permissions. These modifications are distributed here under
|
|
the following terms:
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* __kernel_tanl( x, y, k )
|
|
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
* Input y is the tail of x.
|
|
* Input k indicates whether tan (if k=1) or
|
|
* -1/tan (if k= -1) is returned.
|
|
*
|
|
* Algorithm
|
|
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
|
* 2. if x < 2^-57, return x with inexact if x!=0.
|
|
* 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
|
|
* on [0,0.67433].
|
|
*
|
|
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
|
* ~ tan(x) + (1+x*x)*y
|
|
* Therefore, for better accuracy in computing tan(x+y), let
|
|
* r = x^3 * R(x^2)
|
|
* then
|
|
* tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
|
|
*
|
|
* 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
|
|
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
|
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
|
*/
|
|
|
|
#include <float.h>
|
|
#include <libc-internal.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
static const long double
|
|
one = 1.0L,
|
|
pio4hi = 7.8539816339744830961566084581987569936977E-1L,
|
|
pio4lo = 2.1679525325309452561992610065108379921906E-35L,
|
|
|
|
/* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
|
|
0 <= x <= 0.6743316650390625
|
|
Peak relative error 8.0e-36 */
|
|
TH = 3.333333333333333333333333333333333333333E-1L,
|
|
T0 = -1.813014711743583437742363284336855889393E7L,
|
|
T1 = 1.320767960008972224312740075083259247618E6L,
|
|
T2 = -2.626775478255838182468651821863299023956E4L,
|
|
T3 = 1.764573356488504935415411383687150199315E2L,
|
|
T4 = -3.333267763822178690794678978979803526092E-1L,
|
|
|
|
U0 = -1.359761033807687578306772463253710042010E8L,
|
|
U1 = 6.494370630656893175666729313065113194784E7L,
|
|
U2 = -4.180787672237927475505536849168729386782E6L,
|
|
U3 = 8.031643765106170040139966622980914621521E4L,
|
|
U4 = -5.323131271912475695157127875560667378597E2L;
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
|
|
|
|
long double
|
|
__kernel_tanl (long double x, long double y, int iy)
|
|
{
|
|
long double z, r, v, w, s;
|
|
int32_t ix, sign;
|
|
ieee854_long_double_shape_type u, u1;
|
|
|
|
u.value = x;
|
|
ix = u.parts32.w0 & 0x7fffffff;
|
|
if (ix < 0x3fc60000) /* x < 2**-57 */
|
|
{
|
|
if ((int) x == 0)
|
|
{ /* generate inexact */
|
|
if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3
|
|
| (iy + 1)) == 0)
|
|
return one / fabs (x);
|
|
else if (iy == 1)
|
|
{
|
|
if (fabsl (x) < LDBL_MIN)
|
|
{
|
|
long double force_underflow = x * x;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
return x;
|
|
}
|
|
else
|
|
return -one / x;
|
|
}
|
|
}
|
|
if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
|
|
{
|
|
if ((u.parts32.w0 & 0x80000000) != 0)
|
|
{
|
|
x = -x;
|
|
y = -y;
|
|
sign = -1;
|
|
}
|
|
else
|
|
sign = 1;
|
|
z = pio4hi - x;
|
|
w = pio4lo - y;
|
|
x = z + w;
|
|
y = 0.0;
|
|
}
|
|
z = x * x;
|
|
r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
|
|
v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
|
|
r = r / v;
|
|
|
|
s = z * x;
|
|
r = y + z * (s * r + y);
|
|
r += TH * s;
|
|
w = x + r;
|
|
if (ix >= 0x3ffe5942)
|
|
{
|
|
v = (long double) iy;
|
|
w = (v - 2.0 * (x - (w * w / (w + v) - r)));
|
|
/* SIGN is set for arguments that reach this code, but not
|
|
otherwise, resulting in warnings that it may be used
|
|
uninitialized although in the cases where it is used it has
|
|
always been set. */
|
|
DIAG_PUSH_NEEDS_COMMENT;
|
|
#if __GNUC_PREREQ (4, 7)
|
|
DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized");
|
|
#else
|
|
DIAG_IGNORE_NEEDS_COMMENT (5, "-Wuninitialized");
|
|
#endif
|
|
if (sign < 0)
|
|
w = -w;
|
|
DIAG_POP_NEEDS_COMMENT;
|
|
return w;
|
|
}
|
|
if (iy == 1)
|
|
return w;
|
|
else
|
|
{ /* if allow error up to 2 ulp,
|
|
simply return -1.0/(x+r) here */
|
|
/* compute -1.0/(x+r) accurately */
|
|
u1.value = w;
|
|
u1.parts32.w2 = 0;
|
|
u1.parts32.w3 = 0;
|
|
v = r - (u1.value - x); /* u1+v = r+x */
|
|
z = -1.0 / w;
|
|
u.value = z;
|
|
u.parts32.w2 = 0;
|
|
u.parts32.w3 = 0;
|
|
s = 1.0 + u.value * u1.value;
|
|
return u.value + z * (s + u.value * v);
|
|
}
|
|
}
|