glibc/math/k_casinhf.c

86 lines
2.4 KiB
C

/* Return arc hyperbole sine for float value, with the imaginary part
of the result possibly adjusted for use in computing other
functions.
Copyright (C) 1997-2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* Return the complex inverse hyperbolic sine of finite nonzero Z,
with the imaginary part of the result subtracted from pi/2 if ADJ
is nonzero. */
__complex__ float
__kernel_casinhf (__complex__ float x, int adj)
{
__complex__ float res;
float rx, ix;
__complex__ float y;
/* Avoid cancellation by reducing to the first quadrant. */
rx = fabsf (__real__ x);
ix = fabsf (__imag__ x);
if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON)
{
/* For large x in the first quadrant, x + csqrt (1 + x * x)
is sufficiently close to 2 * x to make no significant
difference to the result; avoid possible overflow from
the squaring and addition. */
__real__ y = rx;
__imag__ y = ix;
if (adj)
{
float t = __real__ y;
__real__ y = __copysignf (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clogf (y);
__real__ res += (float) M_LN2;
}
else
{
__real__ y = (rx - ix) * (rx + ix) + 1.0;
__imag__ y = 2.0 * rx * ix;
y = __csqrtf (y);
__real__ y += rx;
__imag__ y += ix;
if (adj)
{
float t = __real__ y;
__real__ y = __copysignf (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clogf (y);
}
/* Give results the correct sign for the original argument. */
__real__ res = __copysignf (__real__ res, __real__ x);
__imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x));
return res;
}