mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-13 20:50:08 +00:00
c091488e51
The ldbl-128ibm implementation of powl has some problems in the case of overflow or underflow, which are mainly visible in non-default rounding modes. * When overflow or underflow is detected early, the correct sign of an overflowing or underflowing result is not allowed for. This is mostly hidden in the default rounding mode by the errno-setting wrappers recomputing the result (except in non-default error-handling modes such as -lieee), but visible in other rounding modes where a result that is not zero or infinity causes the wrappers not to do the recomputation. * The final scaling is done before the sign is incorporated in the result, but should be done afterwards for correct overflowing and underflowing results in directed rounding modes. This patch fixes those problems. Tested for powerpc. [BZ #19674] * sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Include sign in overflowing and underflowing results when overflow or underflow is detected early. Include sign in result before rather than after scaling.
416 lines
11 KiB
C
416 lines
11 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* Expansions and modifications for 128-bit long double are
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
and are incorporated herein by permission of the author. The author
|
|
reserves the right to distribute this material elsewhere under different
|
|
copying permissions. These modifications are distributed here under
|
|
the following terms:
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* __ieee754_powl(x,y) return x**y
|
|
*
|
|
* n
|
|
* Method: Let x = 2 * (1+f)
|
|
* 1. Compute and return log2(x) in two pieces:
|
|
* log2(x) = w1 + w2,
|
|
* where w1 has 113-53 = 60 bit trailing zeros.
|
|
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
|
* arithmetic, where |y'|<=0.5.
|
|
* 3. Return x**y = 2**n*exp(y'*log2)
|
|
*
|
|
* Special cases:
|
|
* 1. (anything) ** 0 is 1
|
|
* 2. (anything) ** 1 is itself
|
|
* 3. (anything) ** NAN is NAN
|
|
* 4. NAN ** (anything except 0) is NAN
|
|
* 5. +-(|x| > 1) ** +INF is +INF
|
|
* 6. +-(|x| > 1) ** -INF is +0
|
|
* 7. +-(|x| < 1) ** +INF is +0
|
|
* 8. +-(|x| < 1) ** -INF is +INF
|
|
* 9. +-1 ** +-INF is NAN
|
|
* 10. +0 ** (+anything except 0, NAN) is +0
|
|
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
* 12. +0 ** (-anything except 0, NAN) is +INF
|
|
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
|
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
|
* 15. +INF ** (+anything except 0,NAN) is +INF
|
|
* 16. +INF ** (-anything except 0,NAN) is +0
|
|
* 17. -INF ** (anything) = -0 ** (-anything)
|
|
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
*
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static const long double bp[] = {
|
|
1.0L,
|
|
1.5L,
|
|
};
|
|
|
|
/* log_2(1.5) */
|
|
static const long double dp_h[] = {
|
|
0.0,
|
|
5.8496250072115607565592654282227158546448E-1L
|
|
};
|
|
|
|
/* Low part of log_2(1.5) */
|
|
static const long double dp_l[] = {
|
|
0.0,
|
|
1.0579781240112554492329533686862998106046E-16L
|
|
};
|
|
|
|
static const long double zero = 0.0L,
|
|
one = 1.0L,
|
|
two = 2.0L,
|
|
two113 = 1.0384593717069655257060992658440192E34L,
|
|
huge = 1.0e300L,
|
|
tiny = 1.0e-300L;
|
|
|
|
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
|
|
z = (x-1)/(x+1)
|
|
1 <= x <= 1.25
|
|
Peak relative error 2.3e-37 */
|
|
static const long double LN[] =
|
|
{
|
|
-3.0779177200290054398792536829702930623200E1L,
|
|
6.5135778082209159921251824580292116201640E1L,
|
|
-4.6312921812152436921591152809994014413540E1L,
|
|
1.2510208195629420304615674658258363295208E1L,
|
|
-9.9266909031921425609179910128531667336670E-1L
|
|
};
|
|
static const long double LD[] =
|
|
{
|
|
-5.129862866715009066465422805058933131960E1L,
|
|
1.452015077564081884387441590064272782044E2L,
|
|
-1.524043275549860505277434040464085593165E2L,
|
|
7.236063513651544224319663428634139768808E1L,
|
|
-1.494198912340228235853027849917095580053E1L
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
|
|
0 <= x <= 0.5
|
|
Peak relative error 5.7e-38 */
|
|
static const long double PN[] =
|
|
{
|
|
5.081801691915377692446852383385968225675E8L,
|
|
9.360895299872484512023336636427675327355E6L,
|
|
4.213701282274196030811629773097579432957E4L,
|
|
5.201006511142748908655720086041570288182E1L,
|
|
9.088368420359444263703202925095675982530E-3L,
|
|
};
|
|
static const long double PD[] =
|
|
{
|
|
3.049081015149226615468111430031590411682E9L,
|
|
1.069833887183886839966085436512368982758E8L,
|
|
8.259257717868875207333991924545445705394E5L,
|
|
1.872583833284143212651746812884298360922E3L,
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
static const long double
|
|
/* ln 2 */
|
|
lg2 = 6.9314718055994530941723212145817656807550E-1L,
|
|
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
|
|
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
|
|
ovt = 8.0085662595372944372e-0017L,
|
|
/* 2/(3*log(2)) */
|
|
cp = 9.6179669392597560490661645400126142495110E-1L,
|
|
cp_h = 9.6179669392597555432899980587535537779331E-1L,
|
|
cp_l = 5.0577616648125906047157785230014751039424E-17L;
|
|
|
|
long double
|
|
__ieee754_powl (long double x, long double y)
|
|
{
|
|
long double z, ax, z_h, z_l, p_h, p_l;
|
|
long double y1, t1, t2, r, s, sgn, t, u, v, w;
|
|
long double s2, s_h, s_l, t_h, t_l, ay;
|
|
int32_t i, j, k, yisint, n;
|
|
uint32_t ix, iy;
|
|
int32_t hx, hy, hax;
|
|
double ohi, xhi, xlo, yhi, ylo;
|
|
uint32_t lx, ly, lj;
|
|
|
|
ldbl_unpack (x, &xhi, &xlo);
|
|
EXTRACT_WORDS (hx, lx, xhi);
|
|
ix = hx & 0x7fffffff;
|
|
|
|
ldbl_unpack (y, &yhi, &ylo);
|
|
EXTRACT_WORDS (hy, ly, yhi);
|
|
iy = hy & 0x7fffffff;
|
|
|
|
/* y==zero: x**0 = 1 */
|
|
if ((iy | ly) == 0)
|
|
return one;
|
|
|
|
/* 1.0**y = 1; -1.0**+-Inf = 1 */
|
|
if (x == one)
|
|
return one;
|
|
if (x == -1.0L && ((iy - 0x7ff00000) | ly) == 0)
|
|
return one;
|
|
|
|
/* +-NaN return x+y */
|
|
if ((ix >= 0x7ff00000 && ((ix - 0x7ff00000) | lx) != 0)
|
|
|| (iy >= 0x7ff00000 && ((iy - 0x7ff00000) | ly) != 0))
|
|
return x + y;
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
* yisint = 0 ... y is not an integer
|
|
* yisint = 1 ... y is an odd int
|
|
* yisint = 2 ... y is an even int
|
|
*/
|
|
yisint = 0;
|
|
if (hx < 0)
|
|
{
|
|
uint32_t low_ye;
|
|
|
|
GET_HIGH_WORD (low_ye, ylo);
|
|
if ((low_ye & 0x7fffffff) >= 0x43400000) /* Low part >= 2^53 */
|
|
yisint = 2; /* even integer y */
|
|
else if (iy >= 0x3ff00000) /* 1.0 */
|
|
{
|
|
if (__floorl (y) == y)
|
|
{
|
|
z = 0.5 * y;
|
|
if (__floorl (z) == z)
|
|
yisint = 2;
|
|
else
|
|
yisint = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
ax = fabsl (x);
|
|
|
|
/* special value of y */
|
|
if (ly == 0)
|
|
{
|
|
if (iy == 0x7ff00000) /* y is +-inf */
|
|
{
|
|
if (ax > one)
|
|
/* (|x|>1)**+-inf = inf,0 */
|
|
return (hy >= 0) ? y : zero;
|
|
else
|
|
/* (|x|<1)**-,+inf = inf,0 */
|
|
return (hy < 0) ? -y : zero;
|
|
}
|
|
if (ylo == 0.0)
|
|
{
|
|
if (iy == 0x3ff00000)
|
|
{ /* y is +-1 */
|
|
if (hy < 0)
|
|
return one / x;
|
|
else
|
|
return x;
|
|
}
|
|
if (hy == 0x40000000)
|
|
return x * x; /* y is 2 */
|
|
if (hy == 0x3fe00000)
|
|
{ /* y is 0.5 */
|
|
if (hx >= 0) /* x >= +0 */
|
|
return __ieee754_sqrtl (x);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* special value of x */
|
|
if (lx == 0)
|
|
{
|
|
if (ix == 0x7ff00000 || ix == 0 || (ix == 0x3ff00000 && xlo == 0.0))
|
|
{
|
|
z = ax; /*x is +-0,+-inf,+-1 */
|
|
if (hy < 0)
|
|
z = one / z; /* z = (1/|x|) */
|
|
if (hx < 0)
|
|
{
|
|
if (((ix - 0x3ff00000) | yisint) == 0)
|
|
{
|
|
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
|
|
}
|
|
else if (yisint == 1)
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
}
|
|
return z;
|
|
}
|
|
}
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
|
if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
|
|
return (x - x) / (x - x);
|
|
|
|
/* sgn (sign of result -ve**odd) = -1 else = 1 */
|
|
sgn = one;
|
|
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
|
|
sgn = -one; /* (-ve)**(odd int) */
|
|
|
|
/* |y| is huge.
|
|
2^-16495 = 1/2 of smallest representable value.
|
|
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
|
|
if (iy > 0x41d654b0)
|
|
{
|
|
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
|
|
if (iy > 0x47d654b0)
|
|
{
|
|
if (ix <= 0x3fefffff)
|
|
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
|
if (ix >= 0x3ff00000)
|
|
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
|
}
|
|
/* over/underflow if x is not close to one */
|
|
if (ix < 0x3fefffff)
|
|
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
|
if (ix > 0x3ff00000)
|
|
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
|
}
|
|
|
|
ay = y > 0 ? y : -y;
|
|
if (ay < 0x1p-117)
|
|
y = y < 0 ? -0x1p-117 : 0x1p-117;
|
|
|
|
n = 0;
|
|
/* take care subnormal number */
|
|
if (ix < 0x00100000)
|
|
{
|
|
ax *= two113;
|
|
n -= 113;
|
|
ohi = ldbl_high (ax);
|
|
GET_HIGH_WORD (ix, ohi);
|
|
}
|
|
n += ((ix) >> 20) - 0x3ff;
|
|
j = ix & 0x000fffff;
|
|
/* determine interval */
|
|
ix = j | 0x3ff00000; /* normalize ix */
|
|
if (j <= 0x39880)
|
|
k = 0; /* |x|<sqrt(3/2) */
|
|
else if (j < 0xbb670)
|
|
k = 1; /* |x|<sqrt(3) */
|
|
else
|
|
{
|
|
k = 0;
|
|
n += 1;
|
|
ix -= 0x00100000;
|
|
}
|
|
|
|
ohi = ldbl_high (ax);
|
|
GET_HIGH_WORD (hax, ohi);
|
|
ax = __scalbnl (ax, ((int) ((ix - hax) * 2)) >> 21);
|
|
|
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
v = one / (ax + bp[k]);
|
|
s = u * v;
|
|
s_h = ldbl_high (s);
|
|
|
|
/* t_h=ax+bp[k] High */
|
|
t_h = ax + bp[k];
|
|
t_h = ldbl_high (t_h);
|
|
t_l = ax - (t_h - bp[k]);
|
|
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
|
/* compute log(ax) */
|
|
s2 = s * s;
|
|
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
|
|
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
|
|
r = s2 * s2 * u / v;
|
|
r += s_l * (s_h + s);
|
|
s2 = s_h * s_h;
|
|
t_h = 3.0 + s2 + r;
|
|
t_h = ldbl_high (t_h);
|
|
t_l = r - ((t_h - 3.0) - s2);
|
|
/* u+v = s*(1+...) */
|
|
u = s_h * t_h;
|
|
v = s_l * t_h + t_l * s;
|
|
/* 2/(3log2)*(s+...) */
|
|
p_h = u + v;
|
|
p_h = ldbl_high (p_h);
|
|
p_l = v - (p_h - u);
|
|
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
z_l = cp_l * p_h + p_l * cp + dp_l[k];
|
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
t = (long double) n;
|
|
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
|
t1 = ldbl_high (t1);
|
|
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
|
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
|
y1 = ldbl_high (y);
|
|
p_l = (y - y1) * t1 + y * t2;
|
|
p_h = y1 * t1;
|
|
z = p_l + p_h;
|
|
ohi = ldbl_high (z);
|
|
EXTRACT_WORDS (j, lj, ohi);
|
|
if (j >= 0x40d00000) /* z >= 16384 */
|
|
{
|
|
/* if z > 16384 */
|
|
if (((j - 0x40d00000) | lj) != 0)
|
|
return sgn * huge * huge; /* overflow */
|
|
else
|
|
{
|
|
if (p_l + ovt > z - p_h)
|
|
return sgn * huge * huge; /* overflow */
|
|
}
|
|
}
|
|
else if ((j & 0x7fffffff) >= 0x40d01b90) /* z <= -16495 */
|
|
{
|
|
/* z < -16495 */
|
|
if (((j - 0xc0d01bc0) | lj) != 0)
|
|
return sgn * tiny * tiny; /* underflow */
|
|
else
|
|
{
|
|
if (p_l <= z - p_h)
|
|
return sgn * tiny * tiny; /* underflow */
|
|
}
|
|
}
|
|
/* compute 2**(p_h+p_l) */
|
|
i = j & 0x7fffffff;
|
|
k = (i >> 20) - 0x3ff;
|
|
n = 0;
|
|
if (i > 0x3fe00000)
|
|
{ /* if |z| > 0.5, set n = [z+0.5] */
|
|
n = __floorl (z + 0.5L);
|
|
t = n;
|
|
p_h -= t;
|
|
}
|
|
t = p_l + p_h;
|
|
t = ldbl_high (t);
|
|
u = t * lg2_h;
|
|
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
|
|
z = u + v;
|
|
w = v - (z - u);
|
|
/* exp(z) */
|
|
t = z * z;
|
|
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
|
|
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
|
|
t1 = z - t * u / v;
|
|
r = (z * t1) / (t1 - two) - (w + z * w);
|
|
z = one - (r - z);
|
|
z = __scalbnl (sgn * z, n);
|
|
math_check_force_underflow (z);
|
|
return z;
|
|
}
|
|
strong_alias (__ieee754_powl, __powl_finite)
|