mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 23:10:06 +00:00
581c785bf3
I used these shell commands: ../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright (cd ../glibc && git commit -am"[this commit message]") and then ignored the output, which consisted lines saying "FOO: warning: copyright statement not found" for each of 7061 files FOO. I then removed trailing white space from math/tgmath.h, support/tst-support-open-dev-null-range.c, and sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following obscure pre-commit check failure diagnostics from Savannah. I don't know why I run into these diagnostics whereas others evidently do not. remote: *** 912-#endif remote: *** 913: remote: *** 914- remote: *** error: lines with trailing whitespace found ... remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
490 lines
11 KiB
ArmAsm
490 lines
11 KiB
ArmAsm
/* strlen/strnlen/wcslen/wcsnlen optimized with 256-bit EVEX instructions.
|
|
Copyright (C) 2021-2022 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#if IS_IN (libc)
|
|
|
|
# include <sysdep.h>
|
|
|
|
# ifndef STRLEN
|
|
# define STRLEN __strlen_evex
|
|
# endif
|
|
|
|
# define VMOVA vmovdqa64
|
|
|
|
# ifdef USE_AS_WCSLEN
|
|
# define VPCMP vpcmpd
|
|
# define VPMINU vpminud
|
|
# define SHIFT_REG ecx
|
|
# define CHAR_SIZE 4
|
|
# else
|
|
# define VPCMP vpcmpb
|
|
# define VPMINU vpminub
|
|
# define SHIFT_REG edx
|
|
# define CHAR_SIZE 1
|
|
# endif
|
|
|
|
# define XMMZERO xmm16
|
|
# define YMMZERO ymm16
|
|
# define YMM1 ymm17
|
|
# define YMM2 ymm18
|
|
# define YMM3 ymm19
|
|
# define YMM4 ymm20
|
|
# define YMM5 ymm21
|
|
# define YMM6 ymm22
|
|
|
|
# define VEC_SIZE 32
|
|
# define PAGE_SIZE 4096
|
|
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
|
|
|
|
.section .text.evex,"ax",@progbits
|
|
ENTRY (STRLEN)
|
|
# ifdef USE_AS_STRNLEN
|
|
/* Check zero length. */
|
|
test %RSI_LP, %RSI_LP
|
|
jz L(zero)
|
|
# ifdef __ILP32__
|
|
/* Clear the upper 32 bits. */
|
|
movl %esi, %esi
|
|
# endif
|
|
mov %RSI_LP, %R8_LP
|
|
# endif
|
|
movl %edi, %eax
|
|
vpxorq %XMMZERO, %XMMZERO, %XMMZERO
|
|
/* Clear high bits from edi. Only keeping bits relevant to page
|
|
cross check. */
|
|
andl $(PAGE_SIZE - 1), %eax
|
|
/* Check if we may cross page boundary with one vector load. */
|
|
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
|
|
ja L(cross_page_boundary)
|
|
|
|
/* Check the first VEC_SIZE bytes. Each bit in K0 represents a
|
|
null byte. */
|
|
VPCMP $0, (%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
# ifdef USE_AS_STRNLEN
|
|
/* If length < CHAR_PER_VEC handle special. */
|
|
cmpq $CHAR_PER_VEC, %rsi
|
|
jbe L(first_vec_x0)
|
|
# endif
|
|
testl %eax, %eax
|
|
jz L(aligned_more)
|
|
tzcntl %eax, %eax
|
|
ret
|
|
# ifdef USE_AS_STRNLEN
|
|
L(zero):
|
|
xorl %eax, %eax
|
|
ret
|
|
|
|
.p2align 4
|
|
L(first_vec_x0):
|
|
/* Set bit for max len so that tzcnt will return min of max len
|
|
and position of first match. */
|
|
btsq %rsi, %rax
|
|
tzcntl %eax, %eax
|
|
ret
|
|
# endif
|
|
|
|
.p2align 4
|
|
L(first_vec_x1):
|
|
tzcntl %eax, %eax
|
|
/* Safe to use 32 bit instructions as these are only called for
|
|
size = [1, 159]. */
|
|
# ifdef USE_AS_STRNLEN
|
|
/* Use ecx which was computed earlier to compute correct value.
|
|
*/
|
|
leal -(CHAR_PER_VEC * 4 + 1)(%rcx, %rax), %eax
|
|
# else
|
|
subl %edx, %edi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarl $2, %edi
|
|
# endif
|
|
leal CHAR_PER_VEC(%rdi, %rax), %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4
|
|
L(first_vec_x2):
|
|
tzcntl %eax, %eax
|
|
/* Safe to use 32 bit instructions as these are only called for
|
|
size = [1, 159]. */
|
|
# ifdef USE_AS_STRNLEN
|
|
/* Use ecx which was computed earlier to compute correct value.
|
|
*/
|
|
leal -(CHAR_PER_VEC * 3 + 1)(%rcx, %rax), %eax
|
|
# else
|
|
subl %edx, %edi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarl $2, %edi
|
|
# endif
|
|
leal (CHAR_PER_VEC * 2)(%rdi, %rax), %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4
|
|
L(first_vec_x3):
|
|
tzcntl %eax, %eax
|
|
/* Safe to use 32 bit instructions as these are only called for
|
|
size = [1, 159]. */
|
|
# ifdef USE_AS_STRNLEN
|
|
/* Use ecx which was computed earlier to compute correct value.
|
|
*/
|
|
leal -(CHAR_PER_VEC * 2 + 1)(%rcx, %rax), %eax
|
|
# else
|
|
subl %edx, %edi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarl $2, %edi
|
|
# endif
|
|
leal (CHAR_PER_VEC * 3)(%rdi, %rax), %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4
|
|
L(first_vec_x4):
|
|
tzcntl %eax, %eax
|
|
/* Safe to use 32 bit instructions as these are only called for
|
|
size = [1, 159]. */
|
|
# ifdef USE_AS_STRNLEN
|
|
/* Use ecx which was computed earlier to compute correct value.
|
|
*/
|
|
leal -(CHAR_PER_VEC + 1)(%rcx, %rax), %eax
|
|
# else
|
|
subl %edx, %edi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarl $2, %edi
|
|
# endif
|
|
leal (CHAR_PER_VEC * 4)(%rdi, %rax), %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 5
|
|
L(aligned_more):
|
|
movq %rdi, %rdx
|
|
/* Align data to VEC_SIZE. */
|
|
andq $-(VEC_SIZE), %rdi
|
|
L(cross_page_continue):
|
|
/* Check the first 4 * VEC_SIZE. Only one VEC_SIZE at a time
|
|
since data is only aligned to VEC_SIZE. */
|
|
# ifdef USE_AS_STRNLEN
|
|
/* + CHAR_SIZE because it simplies the logic in
|
|
last_4x_vec_or_less. */
|
|
leaq (VEC_SIZE * 5 + CHAR_SIZE)(%rdi), %rcx
|
|
subq %rdx, %rcx
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarl $2, %ecx
|
|
# endif
|
|
# endif
|
|
/* Load first VEC regardless. */
|
|
VPCMP $0, VEC_SIZE(%rdi), %YMMZERO, %k0
|
|
# ifdef USE_AS_STRNLEN
|
|
/* Adjust length. If near end handle specially. */
|
|
subq %rcx, %rsi
|
|
jb L(last_4x_vec_or_less)
|
|
# endif
|
|
kmovd %k0, %eax
|
|
testl %eax, %eax
|
|
jnz L(first_vec_x1)
|
|
|
|
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
test %eax, %eax
|
|
jnz L(first_vec_x2)
|
|
|
|
VPCMP $0, (VEC_SIZE * 3)(%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
testl %eax, %eax
|
|
jnz L(first_vec_x3)
|
|
|
|
VPCMP $0, (VEC_SIZE * 4)(%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
testl %eax, %eax
|
|
jnz L(first_vec_x4)
|
|
|
|
addq $VEC_SIZE, %rdi
|
|
# ifdef USE_AS_STRNLEN
|
|
/* Check if at last VEC_SIZE * 4 length. */
|
|
cmpq $(CHAR_PER_VEC * 4 - 1), %rsi
|
|
jbe L(last_4x_vec_or_less_load)
|
|
movl %edi, %ecx
|
|
andl $(VEC_SIZE * 4 - 1), %ecx
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarl $2, %ecx
|
|
# endif
|
|
/* Readjust length. */
|
|
addq %rcx, %rsi
|
|
# endif
|
|
/* Align data to VEC_SIZE * 4. */
|
|
andq $-(VEC_SIZE * 4), %rdi
|
|
|
|
/* Compare 4 * VEC at a time forward. */
|
|
.p2align 4
|
|
L(loop_4x_vec):
|
|
/* Load first VEC regardless. */
|
|
VMOVA (VEC_SIZE * 4)(%rdi), %YMM1
|
|
# ifdef USE_AS_STRNLEN
|
|
/* Break if at end of length. */
|
|
subq $(CHAR_PER_VEC * 4), %rsi
|
|
jb L(last_4x_vec_or_less_cmpeq)
|
|
# endif
|
|
/* Save some code size by microfusing VPMINU with the load. Since
|
|
the matches in ymm2/ymm4 can only be returned if there where no
|
|
matches in ymm1/ymm3 respectively there is no issue with overlap.
|
|
*/
|
|
VPMINU (VEC_SIZE * 5)(%rdi), %YMM1, %YMM2
|
|
VMOVA (VEC_SIZE * 6)(%rdi), %YMM3
|
|
VPMINU (VEC_SIZE * 7)(%rdi), %YMM3, %YMM4
|
|
|
|
VPCMP $0, %YMM2, %YMMZERO, %k0
|
|
VPCMP $0, %YMM4, %YMMZERO, %k1
|
|
subq $-(VEC_SIZE * 4), %rdi
|
|
kortestd %k0, %k1
|
|
jz L(loop_4x_vec)
|
|
|
|
/* Check if end was in first half. */
|
|
kmovd %k0, %eax
|
|
subq %rdx, %rdi
|
|
# ifdef USE_AS_WCSLEN
|
|
shrq $2, %rdi
|
|
# endif
|
|
testl %eax, %eax
|
|
jz L(second_vec_return)
|
|
|
|
VPCMP $0, %YMM1, %YMMZERO, %k2
|
|
kmovd %k2, %edx
|
|
/* Combine VEC1 matches (edx) with VEC2 matches (eax). */
|
|
# ifdef USE_AS_WCSLEN
|
|
sall $CHAR_PER_VEC, %eax
|
|
orl %edx, %eax
|
|
tzcntl %eax, %eax
|
|
# else
|
|
salq $CHAR_PER_VEC, %rax
|
|
orq %rdx, %rax
|
|
tzcntq %rax, %rax
|
|
# endif
|
|
addq %rdi, %rax
|
|
ret
|
|
|
|
|
|
# ifdef USE_AS_STRNLEN
|
|
|
|
L(last_4x_vec_or_less_load):
|
|
/* Depending on entry adjust rdi / prepare first VEC in YMM1. */
|
|
VMOVA (VEC_SIZE * 4)(%rdi), %YMM1
|
|
L(last_4x_vec_or_less_cmpeq):
|
|
VPCMP $0, %YMM1, %YMMZERO, %k0
|
|
addq $(VEC_SIZE * 3), %rdi
|
|
L(last_4x_vec_or_less):
|
|
kmovd %k0, %eax
|
|
/* If remaining length > VEC_SIZE * 2. This works if esi is off by
|
|
VEC_SIZE * 4. */
|
|
testl $(CHAR_PER_VEC * 2), %esi
|
|
jnz L(last_4x_vec)
|
|
|
|
/* length may have been negative or positive by an offset of
|
|
CHAR_PER_VEC * 4 depending on where this was called from. This
|
|
fixes that. */
|
|
andl $(CHAR_PER_VEC * 4 - 1), %esi
|
|
testl %eax, %eax
|
|
jnz L(last_vec_x1_check)
|
|
|
|
/* Check the end of data. */
|
|
subl $CHAR_PER_VEC, %esi
|
|
jb L(max)
|
|
|
|
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
tzcntl %eax, %eax
|
|
/* Check the end of data. */
|
|
cmpl %eax, %esi
|
|
jb L(max)
|
|
|
|
subq %rdx, %rdi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarq $2, %rdi
|
|
# endif
|
|
leaq (CHAR_PER_VEC * 2)(%rdi, %rax), %rax
|
|
ret
|
|
L(max):
|
|
movq %r8, %rax
|
|
ret
|
|
# endif
|
|
|
|
/* Placed here in strnlen so that the jcc L(last_4x_vec_or_less)
|
|
in the 4x VEC loop can use 2 byte encoding. */
|
|
.p2align 4
|
|
L(second_vec_return):
|
|
VPCMP $0, %YMM3, %YMMZERO, %k0
|
|
/* Combine YMM3 matches (k0) with YMM4 matches (k1). */
|
|
# ifdef USE_AS_WCSLEN
|
|
kunpckbw %k0, %k1, %k0
|
|
kmovd %k0, %eax
|
|
tzcntl %eax, %eax
|
|
# else
|
|
kunpckdq %k0, %k1, %k0
|
|
kmovq %k0, %rax
|
|
tzcntq %rax, %rax
|
|
# endif
|
|
leaq (CHAR_PER_VEC * 2)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
|
|
# ifdef USE_AS_STRNLEN
|
|
L(last_vec_x1_check):
|
|
tzcntl %eax, %eax
|
|
/* Check the end of data. */
|
|
cmpl %eax, %esi
|
|
jb L(max)
|
|
subq %rdx, %rdi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarq $2, %rdi
|
|
# endif
|
|
leaq (CHAR_PER_VEC)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4
|
|
L(last_4x_vec):
|
|
/* Test first 2x VEC normally. */
|
|
testl %eax, %eax
|
|
jnz L(last_vec_x1)
|
|
|
|
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
testl %eax, %eax
|
|
jnz L(last_vec_x2)
|
|
|
|
/* Normalize length. */
|
|
andl $(CHAR_PER_VEC * 4 - 1), %esi
|
|
VPCMP $0, (VEC_SIZE * 3)(%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
testl %eax, %eax
|
|
jnz L(last_vec_x3)
|
|
|
|
/* Check the end of data. */
|
|
subl $(CHAR_PER_VEC * 3), %esi
|
|
jb L(max)
|
|
|
|
VPCMP $0, (VEC_SIZE * 4)(%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
tzcntl %eax, %eax
|
|
/* Check the end of data. */
|
|
cmpl %eax, %esi
|
|
jb L(max_end)
|
|
|
|
subq %rdx, %rdi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarq $2, %rdi
|
|
# endif
|
|
leaq (CHAR_PER_VEC * 4)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4
|
|
L(last_vec_x1):
|
|
tzcntl %eax, %eax
|
|
subq %rdx, %rdi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarq $2, %rdi
|
|
# endif
|
|
leaq (CHAR_PER_VEC)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4
|
|
L(last_vec_x2):
|
|
tzcntl %eax, %eax
|
|
subq %rdx, %rdi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarq $2, %rdi
|
|
# endif
|
|
leaq (CHAR_PER_VEC * 2)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4
|
|
L(last_vec_x3):
|
|
tzcntl %eax, %eax
|
|
subl $(CHAR_PER_VEC * 2), %esi
|
|
/* Check the end of data. */
|
|
cmpl %eax, %esi
|
|
jb L(max_end)
|
|
subq %rdx, %rdi
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide bytes by 4 to get the wchar_t count. */
|
|
sarq $2, %rdi
|
|
# endif
|
|
leaq (CHAR_PER_VEC * 3)(%rdi, %rax), %rax
|
|
ret
|
|
L(max_end):
|
|
movq %r8, %rax
|
|
ret
|
|
# endif
|
|
|
|
/* Cold case for crossing page with first load. */
|
|
.p2align 4
|
|
L(cross_page_boundary):
|
|
movq %rdi, %rdx
|
|
/* Align data to VEC_SIZE. */
|
|
andq $-VEC_SIZE, %rdi
|
|
VPCMP $0, (%rdi), %YMMZERO, %k0
|
|
kmovd %k0, %eax
|
|
/* Remove the leading bytes. */
|
|
# ifdef USE_AS_WCSLEN
|
|
/* NB: Divide shift count by 4 since each bit in K0 represent 4
|
|
bytes. */
|
|
movl %edx, %ecx
|
|
shrl $2, %ecx
|
|
andl $(CHAR_PER_VEC - 1), %ecx
|
|
# endif
|
|
/* SHIFT_REG is ecx for USE_AS_WCSLEN and edx otherwise. */
|
|
sarxl %SHIFT_REG, %eax, %eax
|
|
testl %eax, %eax
|
|
# ifndef USE_AS_STRNLEN
|
|
jz L(cross_page_continue)
|
|
tzcntl %eax, %eax
|
|
ret
|
|
# else
|
|
jnz L(cross_page_less_vec)
|
|
# ifndef USE_AS_WCSLEN
|
|
movl %edx, %ecx
|
|
andl $(CHAR_PER_VEC - 1), %ecx
|
|
# endif
|
|
movl $CHAR_PER_VEC, %eax
|
|
subl %ecx, %eax
|
|
/* Check the end of data. */
|
|
cmpq %rax, %rsi
|
|
ja L(cross_page_continue)
|
|
movl %esi, %eax
|
|
ret
|
|
L(cross_page_less_vec):
|
|
tzcntl %eax, %eax
|
|
/* Select min of length and position of first null. */
|
|
cmpq %rax, %rsi
|
|
cmovb %esi, %eax
|
|
ret
|
|
# endif
|
|
|
|
END (STRLEN)
|
|
#endif
|