mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-14 23:30:06 +00:00
311 lines
6.4 KiB
ArmAsm
311 lines
6.4 KiB
ArmAsm
/* ix87 specific implementation of pow function.
|
|
Copyright (C) 1996, 1997, 1999 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <machine/asm.h>
|
|
|
|
#ifdef __ELF__
|
|
.section .rodata
|
|
#else
|
|
.text
|
|
#endif
|
|
|
|
.align ALIGNARG(4)
|
|
ASM_TYPE_DIRECTIVE(infinity,@object)
|
|
inf_zero:
|
|
infinity:
|
|
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
|
|
ASM_SIZE_DIRECTIVE(infinity)
|
|
ASM_TYPE_DIRECTIVE(zero,@object)
|
|
zero: .double 0.0
|
|
ASM_SIZE_DIRECTIVE(zero)
|
|
ASM_TYPE_DIRECTIVE(minf_mzero,@object)
|
|
minf_mzero:
|
|
minfinity:
|
|
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
|
|
mzero:
|
|
.byte 0, 0, 0, 0, 0, 0, 0, 0x80
|
|
ASM_SIZE_DIRECTIVE(minf_mzero)
|
|
ASM_TYPE_DIRECTIVE(one,@object)
|
|
one: .double 1.0
|
|
ASM_SIZE_DIRECTIVE(one)
|
|
ASM_TYPE_DIRECTIVE(limit,@object)
|
|
limit: .double 0.29
|
|
ASM_SIZE_DIRECTIVE(limit)
|
|
|
|
#ifdef PIC
|
|
#define MO(op) op##@GOTOFF(%ecx)
|
|
#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
|
|
#else
|
|
#define MO(op) op
|
|
#define MOX(op,x,f) op(,x,f)
|
|
#endif
|
|
|
|
.text
|
|
ENTRY(__ieee754_powf)
|
|
flds 8(%esp) // y
|
|
fxam
|
|
|
|
#ifdef PIC
|
|
call 1f
|
|
1: popl %ecx
|
|
addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
|
|
#endif
|
|
|
|
fnstsw
|
|
movb %ah, %dl
|
|
andb $0x45, %ah
|
|
cmpb $0x40, %ah // is y == 0 ?
|
|
je 11f
|
|
|
|
cmpb $0x05, %ah // is y == ±inf ?
|
|
je 12f
|
|
|
|
cmpb $0x01, %ah // is y == NaN ?
|
|
je 30f
|
|
|
|
flds 4(%esp) // x : y
|
|
|
|
subl $4, %esp
|
|
|
|
fxam
|
|
fnstsw
|
|
movb %ah, %dh
|
|
andb $0x45, %ah
|
|
cmpb $0x40, %ah
|
|
je 20f // x is ±0
|
|
|
|
cmpb $0x05, %ah
|
|
je 15f // x is ±inf
|
|
|
|
fxch // y : x
|
|
|
|
/* First see whether `y' is a natural number. In this case we
|
|
can use a more precise algorithm. */
|
|
fld %st // y : y : x
|
|
fistpl (%esp) // y : x
|
|
fildl (%esp) // int(y) : y : x
|
|
fucomp %st(1) // y : x
|
|
fnstsw
|
|
sahf
|
|
jne 2f
|
|
|
|
/* OK, we have an integer value for y. */
|
|
popl %edx
|
|
orl $0, %edx
|
|
fstp %st(0) // x
|
|
jns 4f // y >= 0, jump
|
|
fdivrl MO(one) // 1/x (now referred to as x)
|
|
negl %edx
|
|
4: fldl MO(one) // 1 : x
|
|
fxch
|
|
|
|
6: shrl $1, %edx
|
|
jnc 5f
|
|
fxch
|
|
fmul %st(1) // x : ST*x
|
|
fxch
|
|
5: fmul %st(0), %st // x*x : ST*x
|
|
testl %edx, %edx
|
|
jnz 6b
|
|
fstp %st(0) // ST*x
|
|
30: ret
|
|
|
|
.align ALIGNARG(4)
|
|
2: /* y is a real number. */
|
|
fxch // x : y
|
|
fldl MO(one) // 1.0 : x : y
|
|
fld %st(1) // x : 1.0 : x : y
|
|
fsub %st(1) // x-1 : 1.0 : x : y
|
|
fabs // |x-1| : 1.0 : x : y
|
|
fcompl MO(limit) // 1.0 : x : y
|
|
fnstsw
|
|
fxch // x : 1.0 : y
|
|
sahf
|
|
ja 7f
|
|
fsub %st(1) // x-1 : 1.0 : y
|
|
fyl2xp1 // log2(x) : y
|
|
jmp 8f
|
|
|
|
7: fyl2x // log2(x) : y
|
|
8: fmul %st(1) // y*log2(x) : y
|
|
fst %st(1) // y*log2(x) : y*log2(x)
|
|
frndint // int(y*log2(x)) : y*log2(x)
|
|
fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
|
|
fxch // fract(y*log2(x)) : int(y*log2(x))
|
|
f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
|
|
faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
|
|
fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
|
|
addl $4, %esp
|
|
fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
|
|
ret
|
|
|
|
|
|
// pow(x,±0) = 1
|
|
.align ALIGNARG(4)
|
|
11: fstp %st(0) // pop y
|
|
fldl MO(one)
|
|
ret
|
|
|
|
// y == ±inf
|
|
.align ALIGNARG(4)
|
|
12: fstp %st(0) // pop y
|
|
flds 4(%esp) // x
|
|
fabs
|
|
fcompl MO(one) // < 1, == 1, or > 1
|
|
fnstsw
|
|
andb $0x45, %ah
|
|
cmpb $0x45, %ah
|
|
je 13f // jump if x is NaN
|
|
|
|
cmpb $0x40, %ah
|
|
je 14f // jump if |x| == 1
|
|
|
|
shlb $1, %ah
|
|
xorb %ah, %dl
|
|
andl $2, %edx
|
|
fldl MOX(inf_zero, %edx, 4)
|
|
ret
|
|
|
|
.align ALIGNARG(4)
|
|
14: fldl MO(infinity)
|
|
fmull MO(zero) // raise invalid exception
|
|
ret
|
|
|
|
.align ALIGNARG(4)
|
|
13: flds 4(%esp) // load x == NaN
|
|
ret
|
|
|
|
.align ALIGNARG(4)
|
|
// x is ±inf
|
|
15: fstp %st(0) // y
|
|
testb $2, %dh
|
|
jz 16f // jump if x == +inf
|
|
|
|
// We must find out whether y is an odd integer.
|
|
fld %st // y : y
|
|
fistpl (%esp) // y
|
|
fildl (%esp) // int(y) : y
|
|
fucompp // <empty>
|
|
fnstsw
|
|
sahf
|
|
jne 17f
|
|
|
|
// OK, the value is an integer, but is the number of bits small
|
|
// enough so that all are coming from the mantissa?
|
|
popl %edx
|
|
testb $1, %dl
|
|
jz 18f // jump if not odd
|
|
movl %edx, %eax
|
|
orl %edx, %edx
|
|
jns 155f
|
|
negl %eax
|
|
155: cmpl $0x01000000, %eax
|
|
ja 18f // does not fit in mantissa bits
|
|
// It's an odd integer.
|
|
shrl $31, %edx
|
|
fldl MOX(minf_mzero, %edx, 8)
|
|
ret
|
|
|
|
.align ALIGNARG(4)
|
|
16: fcompl MO(zero)
|
|
addl $4, %esp
|
|
fnstsw
|
|
shrl $5, %eax
|
|
andl $8, %eax
|
|
fldl MOX(inf_zero, %eax, 1)
|
|
ret
|
|
|
|
.align ALIGNARG(4)
|
|
17: shll $30, %edx // sign bit for y in right position
|
|
addl $4, %esp
|
|
18: shrl $31, %edx
|
|
fldl MOX(inf_zero, %edx, 8)
|
|
ret
|
|
|
|
.align ALIGNARG(4)
|
|
// x is ±0
|
|
20: fstp %st(0) // y
|
|
testb $2, %dl
|
|
jz 21f // y > 0
|
|
|
|
// x is ±0 and y is < 0. We must find out whether y is an odd integer.
|
|
testb $2, %dh
|
|
jz 25f
|
|
|
|
fld %st // y : y
|
|
fistpl (%esp) // y
|
|
fildl (%esp) // int(y) : y
|
|
fucompp // <empty>
|
|
fnstsw
|
|
sahf
|
|
jne 26f
|
|
|
|
// OK, the value is an integer, but is the number of bits small
|
|
// enough so that all are coming from the mantissa?
|
|
popl %edx
|
|
testb $1, %dl
|
|
jz 27f // jump if not odd
|
|
cmpl $0xff000000, %edx
|
|
jbe 27f // does not fit in mantissa bits
|
|
// It's an odd integer.
|
|
// Raise divide-by-zero exception and get minus infinity value.
|
|
fldl MO(one)
|
|
fdivl MO(zero)
|
|
fchs
|
|
ret
|
|
|
|
25: fstp %st(0)
|
|
26: addl $4, %esp
|
|
27: // Raise divide-by-zero exception and get infinity value.
|
|
fldl MO(one)
|
|
fdivl MO(zero)
|
|
ret
|
|
|
|
.align ALIGNARG(4)
|
|
// x is ±0 and y is > 0. We must find out whether y is an odd integer.
|
|
21: testb $2, %dh
|
|
jz 22f
|
|
|
|
fld %st // y : y
|
|
fistpl (%esp) // y
|
|
fildl (%esp) // int(y) : y
|
|
fucompp // <empty>
|
|
fnstsw
|
|
sahf
|
|
jne 23f
|
|
|
|
// OK, the value is an integer, but is the number of bits small
|
|
// enough so that all are coming from the mantissa?
|
|
popl %edx
|
|
testb $1, %dl
|
|
jz 24f // jump if not odd
|
|
cmpl $0xff000000, %edx
|
|
jae 24f // does not fit in mantissa bits
|
|
// It's an odd integer.
|
|
fldl MO(mzero)
|
|
ret
|
|
|
|
22: fstp %st(0)
|
|
23: addl $4, %esp // Don't use pop.
|
|
24: fldl MO(zero)
|
|
ret
|
|
|
|
END(__ieee754_powf)
|