mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-16 13:44:14 +00:00
9acda61d94
For j0f/j1f/y0f/y1f, the largest error for all binary32 inputs is reduced to at most 9 ulps for all rounding modes. The new code is enabled only when there is a cancellation at the very end of the j0f/j1f/y0f/y1f computation, or for very large inputs, thus should not give any visible slowdown on average. Two different algorithms are used: * around the first 64 zeros of j0/j1/y0/y1, approximation polynomials of degree 3 are used, computed using the Sollya tool (https://www.sollya.org/) * for large inputs, an asymptotic formula from [1] is used [1] Fast and Accurate Bessel Function Computation, John Harrison, Proceedings of Arith 19, 2009. Inputs yielding the new largest errors are added to auto-libm-test-in, and ulps are regenerated for various targets (thanks Adhemerval Zanella). Tested on x86_64 with --disable-multi-arch and on powerpc64le-linux-gnu. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> |
||
---|---|---|
.. | ||
dbl-64 | ||
float128 | ||
flt-32 | ||
ldbl-64-128 | ||
ldbl-96 | ||
ldbl-128 | ||
ldbl-128ibm | ||
ldbl-128ibm-compat | ||
ldbl-opt | ||
soft-fp | ||
ieee754.h | ||
k_standard.c | ||
k_standardf.c | ||
k_standardl.c | ||
libm-alias-finite.h | ||
Makefile | ||
s_lib_version.c | ||
s_matherr.c | ||
s_signgam.c |