mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-06 01:21:08 +00:00
3b1c5a539b
Some CORE-MATH routines uses roundeven and most of ISA do not have an specific instruction for the operation. In this case, the call will be routed to generic implementation. However, if the ISA does support round() and ctz() there is a better alternative (as used by CORE-MATH). This patch adds such optimization and also enables it on powerpc. On a power10 it shows the following improvement: expm1f master patched improvement latency 9.8574 7.0139 28.85% reciprocal-throughput 4.3742 2.6592 39.21% Checked on powerpc64le-linux-gnu and aarch64-linux-gnu. Reviewed-by: DJ Delorie <dj@redhat.com>
177 lines
6.1 KiB
C
177 lines
6.1 KiB
C
/* Implementation of the gamma function for binary32.
|
|
|
|
Copyright (c) 2023-2024 Alexei Sibidanov.
|
|
|
|
The original version of this file was copied from the CORE-MATH
|
|
project (file src/binary32/tgamma/tgammaf.c, revision a48e352).
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
|
|
/* Changes with respect to the original CORE-MATH code:
|
|
- removed the dealing with errno
|
|
(this is done in the wrapper math/w_tgammaf_compat.c)
|
|
- usage of math_narrow_eval to deal with underflow/overflow
|
|
- deal with signgamp
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <libm-alias-finite.h>
|
|
#include <math-narrow-eval.h>
|
|
#include "math_config.h"
|
|
|
|
float
|
|
__ieee754_gammaf_r (float x, int *signgamp)
|
|
{
|
|
/* The wrapper in math/w_tgamma_template.c expects *signgamp to be set to a
|
|
non-negative value if the returned value is gamma(x), and to a negative
|
|
value if it is -gamma(x).
|
|
Since the code here directly computes gamma(x), we set it to 1.
|
|
*/
|
|
if (signgamp != NULL)
|
|
*signgamp = 1;
|
|
|
|
/* List of exceptional cases. Each entry contains the 32-bit encoding u of x,
|
|
a binary32 approximation f of gamma(x), and a correction term df. */
|
|
static const struct
|
|
{
|
|
uint32_t u;
|
|
float f, df;
|
|
} tb[] = {
|
|
{ 0x27de86a9u, 0x1.268266p+47f, 0x1p22f }, /* x = 0x1.bd0d52p-48 */
|
|
{ 0x27e05475u, 0x1.242422p+47f, 0x1p22f }, /* x = 0x1.c0a8eap-48 */
|
|
{ 0xb63befb3u, -0x1.5cb6e4p+18f, 0x1p-7f }, /* x = -0x1.77df66p-19 */
|
|
{ 0x3c7bb570u, 0x1.021d9p+6f, 0x1p-19f }, /* x = 0x1.f76aep-7 */
|
|
{ 0x41e886d1u, 0x1.33136ap+98f, 0x1p73f }, /* x = 0x1.d10da2p+4 */
|
|
{ 0xc067d177u, 0x1.f6850cp-3f, 0x1p-28f }, /* x = -0x1.cfa2eep+1 */
|
|
{ 0xbd99da31u, -0x1.befe66p+3, -0x1p-22f }, /* x = -0x1.33b462p-4 */
|
|
{ 0xbf54c45au, -0x1.a6b4ecp+2, 0x1p-23f }, /* x = -0x1.a988b4p-1 */
|
|
{ 0x41ee77feu, 0x1.d3631cp+101, -0x1p-76f }, /* x = 0x1.dceffcp+4 */
|
|
{ 0x3f843a64u, 0x1.f6c638p-1, 0x1p-26f }, /* x = 0x1.0874c8p+0 */
|
|
};
|
|
|
|
uint32_t t = asuint (x);
|
|
uint32_t ax = t << 1;
|
|
if (__glibc_unlikely (ax >= (0xffu << 24)))
|
|
{ /* x=NaN or +/-Inf */
|
|
if (ax == (0xffu << 24))
|
|
{ /* x=+/-Inf */
|
|
if (t >> 31) /* x=-Inf */
|
|
return __math_invalidf (x);
|
|
return x; /* x=+Inf */
|
|
}
|
|
return x + x; /* x=NaN, where x+x ensures the "Invalid operation"
|
|
exception is set if x is sNaN */
|
|
}
|
|
double z = x;
|
|
if (__glibc_unlikely (ax < 0x6d000000u))
|
|
{ /* |x| < 0x1p-18 */
|
|
volatile double d = (0x1.fa658c23b1578p-1 - 0x1.d0a118f324b63p-1 * z)
|
|
* z - 0x1.2788cfc6fb619p-1;
|
|
double f = 1.0 / z + d;
|
|
float r = f;
|
|
uint64_t rt = asuint64 (f);
|
|
if (((rt + 2) & 0xfffffff) < 4)
|
|
{
|
|
for (unsigned i = 0; i < sizeof (tb) / sizeof (tb[0]); i++)
|
|
if (t == tb[i].u)
|
|
return tb[i].f + tb[i].df;
|
|
}
|
|
return r;
|
|
}
|
|
float fx = floorf (x);
|
|
if (__glibc_unlikely (x >= 0x1.18522p+5f))
|
|
{
|
|
/* Overflow case. The original CORE-MATH code returns
|
|
0x1p127f * 0x1p127f, but apparently some compilers replace this
|
|
by +Inf. */
|
|
return math_narrow_eval (x * 0x1p127f);
|
|
}
|
|
/* compute k only after the overflow check, otherwise the case to integer
|
|
might overflow */
|
|
int k = fx;
|
|
if (__glibc_unlikely (fx == x))
|
|
{ /* x is integer */
|
|
if (x == 0.0f)
|
|
return 1.0f / x;
|
|
if (x < 0.0f)
|
|
return __math_invalidf (0.0f);
|
|
double t0 = 1, x0 = 1;
|
|
for (int i = 1; i < k; i++, x0 += 1.0)
|
|
t0 *= x0;
|
|
return t0;
|
|
}
|
|
if (__glibc_unlikely (x < -42.0f))
|
|
{ /* negative non-integer */
|
|
/* For x < -42, x non-integer, |gamma(x)| < 2^-151. */
|
|
static const float sgn[2] = { 0x1p-127f, -0x1p-127f };
|
|
/* Underflows always happens */
|
|
return math_narrow_eval (0x1p-127f * sgn[k & 1]);
|
|
}
|
|
/* The array c[] stores a degree-15 polynomial approximation for
|
|
gamma(x). */
|
|
static const double c[] =
|
|
{
|
|
0x1.c9a76be577123p+0, 0x1.8f2754ddcf90dp+0, 0x1.0d1191949419bp+0,
|
|
0x1.e1f42cf0ae4a1p-2, 0x1.82b358a3ab638p-3, 0x1.e1f2b30cd907bp-5,
|
|
0x1.240f6d4071bd8p-6, 0x1.1522c9f3cd012p-8, 0x1.1fd0051a0525bp-10,
|
|
0x1.9808a8b96c37ep-13, 0x1.b3f78e01152b5p-15, 0x1.49c85a7e1fd04p-18,
|
|
0x1.471ca49184475p-19, -0x1.368f0b7ed9e36p-23, 0x1.882222f9049efp-23,
|
|
-0x1.a69ed2042842cp-25
|
|
};
|
|
|
|
double m = z - 0x1.7p+1;
|
|
double i = roundeven_finite (m);
|
|
double step = copysign (1.0, i);
|
|
double d = m - i, d2 = d * d, d4 = d2 * d2, d8 = d4 * d4;
|
|
double f = (c[0] + d * c[1]) + d2 * (c[2] + d * c[3])
|
|
+ d4 * ((c[4] + d * c[5]) + d2 * (c[6] + d * c[7]))
|
|
+ d8 * ((c[8] + d * c[9]) + d2 * (c[10] + d * c[11])
|
|
+ d4 * ((c[12] + d * c[13]) + d2 * (c[14] + d * c[15])));
|
|
int jm = fabs (i);
|
|
double w = 1;
|
|
if (jm)
|
|
{
|
|
z -= 0.5 + step * 0.5;
|
|
w = z;
|
|
for (int j = jm - 1; j; j--)
|
|
{
|
|
z -= step;
|
|
w *= z;
|
|
}
|
|
}
|
|
if (i <= -0.5)
|
|
w = 1 / w;
|
|
f *= w;
|
|
uint64_t rt = asuint64 (f);
|
|
float r = f;
|
|
/* Deal with exceptional cases. */
|
|
if (__glibc_unlikely (((rt + 2) & 0xfffffff) < 8))
|
|
{
|
|
for (unsigned j = 0; j < sizeof (tb) / sizeof (tb[0]); j++)
|
|
if (t == tb[j].u)
|
|
return tb[j].f + tb[j].df;
|
|
}
|
|
return r;
|
|
}
|
|
libm_alias_finite (__ieee754_gammaf_r, __gammaf_r)
|