mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-14 23:30:06 +00:00
1953 lines
57 KiB
C
1953 lines
57 KiB
C
/* Copyright (C) 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <endian.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <locale.h>
|
|
#include <obstack.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <wchar.h>
|
|
|
|
#include "localeinfo.h"
|
|
#include "locales.h"
|
|
#include "simple-hash.h"
|
|
#include "stringtrans.h"
|
|
#include "strlen-hash.h"
|
|
|
|
/* Uncomment the following line in the production version. */
|
|
/* #define NDEBUG 1 */
|
|
#include <assert.h>
|
|
|
|
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
#define SWAPU32(w) \
|
|
(((w) << 24) | (((w) & 0xff00) << 8) | (((w) >> 8) & 0xff00) | ((w) >> 24))
|
|
|
|
|
|
/* What kind of symbols get defined? */
|
|
enum coll_symbol
|
|
{
|
|
undefined,
|
|
ellipsis,
|
|
character,
|
|
element,
|
|
symbol
|
|
};
|
|
|
|
|
|
typedef struct patch_t
|
|
{
|
|
const char *fname;
|
|
size_t lineno;
|
|
const char *token;
|
|
union
|
|
{
|
|
unsigned int *pos;
|
|
size_t idx;
|
|
} where;
|
|
struct patch_t *next;
|
|
} patch_t;
|
|
|
|
|
|
typedef struct element_t
|
|
{
|
|
const wchar_t *name;
|
|
unsigned int this_weight;
|
|
|
|
struct element_t *next;
|
|
|
|
unsigned int *ordering;
|
|
size_t ordering_len;
|
|
} element_t;
|
|
|
|
|
|
/* The real definition of the struct for the LC_COLLATE locale. */
|
|
struct locale_collate_t
|
|
{
|
|
/* Collate symbol table. Simple mapping to number. */
|
|
hash_table symbols;
|
|
|
|
/* The collation elements. */
|
|
hash_table elements;
|
|
struct obstack element_mem;
|
|
|
|
/* The result table. */
|
|
hash_table result;
|
|
|
|
/* Sorting rules given in order_start line. */
|
|
u_int32_t nrules;
|
|
u_int32_t nrules_max;
|
|
enum coll_sort_rule *rules;
|
|
|
|
/* Used while recognizing symbol composed of multiple tokens
|
|
(collating-element). */
|
|
const char *combine_token;
|
|
size_t combine_token_len;
|
|
|
|
/* How many sorting order specifications so far. */
|
|
unsigned int order_cnt;
|
|
|
|
/* Was lastline ellipsis? */
|
|
int was_ellipsis;
|
|
/* Value of last entry if was character. */
|
|
wchar_t last_char;
|
|
/* Current element. */
|
|
element_t *current_element;
|
|
/* What kind of symbol is current element. */
|
|
enum coll_symbol kind;
|
|
|
|
/* While collecting the weights we need some temporary space. */
|
|
unsigned int current_order;
|
|
int *weight_cnt;
|
|
unsigned int weight_idx;
|
|
unsigned int *weight;
|
|
size_t nweight;
|
|
size_t nweight_max;
|
|
|
|
/* Patch lists. */
|
|
patch_t *current_patch;
|
|
patch_t *all_patches;
|
|
|
|
/* Room for the UNDEFINED information. */
|
|
element_t undefined;
|
|
unsigned int undefined_len;
|
|
};
|
|
|
|
|
|
/* Be verbose? Defined in localedef.c. */
|
|
extern int verbose;
|
|
|
|
|
|
void *xmalloc (size_t __n);
|
|
void *xrealloc (void *__p, size_t __n);
|
|
|
|
|
|
#define obstack_chunk_alloc malloc
|
|
#define obstack_chunk_free free
|
|
|
|
|
|
void
|
|
collate_startup (struct linereader *lr, struct localedef_t *locale,
|
|
struct charset_t *charset)
|
|
{
|
|
struct locale_collate_t *collate;
|
|
|
|
/* We have a definition for LC_COLLATE. */
|
|
copy_posix.mask &= ~(1 << LC_COLLATE);
|
|
|
|
/* It is important that we always use UCS4 encoding for strings now. */
|
|
encoding_method = ENC_UCS4;
|
|
|
|
/* Allocate the needed room. */
|
|
locale->categories[LC_COLLATE].collate = collate =
|
|
(struct locale_collate_t *) xmalloc (sizeof (struct locale_collate_t));
|
|
|
|
/* Allocate hash table for collating elements. */
|
|
if (init_hash (&collate->elements, 512))
|
|
error (4, 0, _("memory exhausted"));
|
|
collate->combine_token = NULL;
|
|
obstack_init (&collate->element_mem);
|
|
|
|
/* Allocate hash table for collating elements. */
|
|
if (init_hash (&collate->symbols, 64))
|
|
error (4, 0, _("memory exhausted"));
|
|
|
|
/* Allocate hash table for result. */
|
|
if (init_hash (&collate->result, 512))
|
|
error (4, 0, _("memory exhausted"));
|
|
|
|
collate->nrules = 0;
|
|
collate->nrules_max = 10;
|
|
collate->rules
|
|
= (enum coll_sort_rule *) xmalloc (collate->nrules_max
|
|
* sizeof (enum coll_sort_rule));
|
|
|
|
collate->order_cnt = 1; /* The smallest weight is 2. */
|
|
|
|
collate->was_ellipsis = 0;
|
|
collate->last_char = L'\0'; /* 0 because leading ellipsis is allowed. */
|
|
|
|
collate->all_patches = NULL;
|
|
|
|
/* This tells us no UNDEFINED entry was found until now. */
|
|
memset (&collate->undefined, '\0', sizeof (collate->undefined));
|
|
|
|
lr->translate_strings = 0;
|
|
}
|
|
|
|
|
|
void
|
|
collate_finish (struct localedef_t *locale, struct charset_t *charset)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
patch_t *patch;
|
|
size_t cnt;
|
|
|
|
/* Patch the constructed table so that forward references are
|
|
correctly filled. */
|
|
for (patch = collate->all_patches; patch != NULL; patch = patch->next)
|
|
{
|
|
wchar_t wch;
|
|
size_t toklen = strlen (patch->token);
|
|
void *ptmp;
|
|
unsigned int value = 0;
|
|
|
|
wch = charset_find_value (&charset->char_table, patch->token, toklen);
|
|
if (wch != ILLEGAL_CHAR_VALUE)
|
|
{
|
|
element_t *runp;
|
|
|
|
if (find_entry (&collate->result, &wch, sizeof (wchar_t),
|
|
(void *) &runp) < 0)
|
|
runp = NULL;
|
|
for (; runp != NULL; runp = runp->next)
|
|
if (runp->name[0] == wch && runp->name[1] == L'\0')
|
|
break;
|
|
|
|
value = runp == NULL ? 0 : runp->this_weight;
|
|
}
|
|
else if (find_entry (&collate->elements, patch->token, toklen, &ptmp)
|
|
>= 0)
|
|
{
|
|
value = ((element_t *) ptmp)->this_weight;
|
|
}
|
|
else if (find_entry (&collate->symbols, patch->token, toklen, &ptmp)
|
|
>= 0)
|
|
{
|
|
value = (unsigned long int) ptmp;
|
|
}
|
|
else
|
|
value = 0;
|
|
|
|
if (value == 0)
|
|
{
|
|
if (!be_quiet)
|
|
error_at_line (0, 0, patch->fname, patch->lineno,
|
|
_("no weight defined for symbol `%s'"),
|
|
patch->token);
|
|
}
|
|
else
|
|
*patch->where.pos = value;
|
|
}
|
|
|
|
/* If no definition for UNDEFINED is given, all characters in the
|
|
given charset must be specified. */
|
|
if (collate->undefined.ordering == NULL)
|
|
{
|
|
/**************************************************************\
|
|
|* XXX We should test whether really an unspecified character *|
|
|
|* exists before giving the message. *|
|
|
\**************************************************************/
|
|
u_int32_t weight;
|
|
|
|
if (/* XXX Remove the 0 & */ 0 && !be_quiet)
|
|
error (0, 0, _("no definition of `UNDEFINED'"));
|
|
|
|
collate->undefined.ordering_len = collate->nrules;
|
|
weight = ++collate->order_cnt;
|
|
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
{
|
|
u_int32_t one = 1;
|
|
obstack_grow (&collate->element_mem, &one, sizeof (one));
|
|
}
|
|
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
obstack_grow (&collate->element_mem, &weight, sizeof (weight));
|
|
|
|
collate->undefined.ordering = obstack_finish (&collate->element_mem);
|
|
}
|
|
|
|
collate->undefined_len = 2; /* For the name: 1 x wchar_t + L'\0'. */
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
collate->undefined_len += 1 + collate->undefined.ordering[cnt];
|
|
}
|
|
|
|
|
|
|
|
void
|
|
collate_output (struct localedef_t *locale, struct charset_t *charset,
|
|
const char *output_path)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
u_int32_t table_size, table_best, level_best, sum_best;
|
|
void *last;
|
|
element_t *pelem;
|
|
wchar_t *name;
|
|
size_t len;
|
|
const size_t nelems = _NL_ITEM_INDEX (_NL_NUM_LC_COLLATE);
|
|
struct iovec iov[2 + nelems];
|
|
struct locale_file data;
|
|
u_int32_t idx[nelems];
|
|
struct obstack non_simple;
|
|
struct obstack string_pool;
|
|
size_t cnt, entry_size;
|
|
u_int32_t undefined_offset = UINT_MAX;
|
|
u_int32_t *table, *extra, *table2, *extra2;
|
|
size_t extra_len;
|
|
u_int32_t element_hash_tab_size;
|
|
u_int32_t *element_hash_tab;
|
|
u_int32_t *element_hash_tab_ob;
|
|
u_int32_t element_string_pool_size;
|
|
char *element_string_pool;
|
|
u_int32_t element_value_size;
|
|
wchar_t *element_value;
|
|
wchar_t *element_value_ob;
|
|
u_int32_t symbols_hash_tab_size;
|
|
u_int32_t *symbols_hash_tab;
|
|
u_int32_t *symbols_hash_tab_ob;
|
|
u_int32_t symbols_string_pool_size;
|
|
char *symbols_string_pool;
|
|
u_int32_t symbols_class_size;
|
|
u_int32_t *symbols_class;
|
|
u_int32_t *symbols_class_ob;
|
|
hash_table *hash_tab;
|
|
unsigned int dummy_weights[collate->nrules + 1];
|
|
|
|
sum_best = UINT_MAX;
|
|
table_best = 0xffff;
|
|
level_best = 0xffff;
|
|
|
|
/* Compute table size. */
|
|
if (!be_quiet)
|
|
fputs (_("\
|
|
Computing table size for collation information might take a while..."),
|
|
stderr);
|
|
for (table_size = 256; table_size < sum_best; ++table_size)
|
|
{
|
|
size_t hits[table_size];
|
|
unsigned int worst = 1;
|
|
size_t cnt;
|
|
|
|
last = NULL;
|
|
|
|
for (cnt = 0; cnt < 256; ++cnt)
|
|
hits[cnt] = 1;
|
|
memset (&hits[256], '\0', sizeof (hits) - 256 * sizeof (size_t));
|
|
|
|
while (iterate_table (&collate->result, &last, (const void **) &name,
|
|
&len, (void **) &pelem) >= 0)
|
|
if (pelem->ordering != NULL && pelem->name[0] > 0xff)
|
|
if (++hits[(unsigned int) pelem->name[0] % table_size] > worst)
|
|
{
|
|
worst = hits[(unsigned int) pelem->name[0] % table_size];
|
|
if (table_size * worst > sum_best)
|
|
break;
|
|
}
|
|
|
|
if (table_size * worst < sum_best)
|
|
{
|
|
sum_best = table_size * worst;
|
|
table_best = table_size;
|
|
level_best = worst;
|
|
}
|
|
}
|
|
assert (table_best != 0xffff || level_best != 0xffff);
|
|
if (!be_quiet)
|
|
fputs (_(" done\n"), stderr);
|
|
|
|
obstack_init (&non_simple);
|
|
obstack_init (&string_pool);
|
|
|
|
data.magic = LIMAGIC (LC_COLLATE);
|
|
data.n = nelems;
|
|
iov[0].iov_base = (void *) &data;
|
|
iov[0].iov_len = sizeof (data);
|
|
|
|
iov[1].iov_base = (void *) idx;
|
|
iov[1].iov_len = sizeof (idx);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_NRULES)].iov_base = &collate->nrules;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_NRULES)].iov_len = sizeof (u_int32_t);
|
|
|
|
table = (u_int32_t *) alloca (collate->nrules * sizeof (u_int32_t));
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_RULES)].iov_base = table;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_RULES)].iov_len
|
|
= collate->nrules * sizeof (u_int32_t);
|
|
/* Another trick here. Describing the collation method needs only a
|
|
few bits (3, to be exact). But the binary file should be
|
|
accessible by machines with both endianesses and so we store both
|
|
forms in the same word. */
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
table[cnt] = collate->rules[cnt] | SWAPU32 (collate->rules[cnt]);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_HASH_SIZE)].iov_base = &table_best;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_HASH_SIZE)].iov_len = sizeof (u_int32_t);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_HASH_LAYERS)].iov_base = &level_best;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_HASH_LAYERS)].iov_len
|
|
= sizeof (u_int32_t);
|
|
|
|
entry_size = 1 + MAX (collate->nrules, 2);
|
|
|
|
table = (u_int32_t *) alloca (table_best * level_best * entry_size
|
|
* sizeof (table[0]));
|
|
memset (table, '\0', table_best * level_best * entry_size
|
|
* sizeof (table[0]));
|
|
|
|
|
|
/* Macros for inserting in output table. */
|
|
#define ADD_VALUE(expr) \
|
|
do { \
|
|
u_int32_t to_write = (u_int32_t) expr; \
|
|
obstack_grow (&non_simple, &to_write, sizeof (to_write)); \
|
|
} while (0)
|
|
|
|
#define ADD_ELEMENT(pelem, len) \
|
|
do { \
|
|
size_t cnt, idx; \
|
|
\
|
|
ADD_VALUE (len); \
|
|
\
|
|
wlen = wcslen (pelem->name); \
|
|
obstack_grow (&non_simple, pelem->name, (wlen + 1) * sizeof (u_int32_t)); \
|
|
\
|
|
idx = collate->nrules; \
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt) \
|
|
{ \
|
|
size_t disp; \
|
|
\
|
|
ADD_VALUE (pelem->ordering[cnt]); \
|
|
for (disp = 0; disp < pelem->ordering[cnt]; ++disp) \
|
|
ADD_VALUE (pelem->ordering[idx++]); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define ADD_FORWARD(pelem) \
|
|
do { \
|
|
/* We leave a reference in the main table and put all \
|
|
information in the table for the extended entries. */ \
|
|
element_t *runp; \
|
|
element_t *has_simple = NULL; \
|
|
size_t wlen; \
|
|
\
|
|
table[(level * table_best + slot) * entry_size + 1] \
|
|
= FORWARD_CHAR; \
|
|
table[(level * table_best + slot) * entry_size + 2] \
|
|
= obstack_object_size (&non_simple) / sizeof (u_int32_t); \
|
|
\
|
|
/* Here we have to construct the non-simple table entry. First \
|
|
compute the total length of this entry. */ \
|
|
for (runp = (pelem); runp != NULL; runp = runp->next) \
|
|
if (runp->ordering != NULL) \
|
|
{ \
|
|
u_int32_t value; \
|
|
size_t cnt; \
|
|
\
|
|
value = 1 + wcslen (runp->name) + 1; \
|
|
\
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt) \
|
|
/* We have to take care for entries without ordering \
|
|
information. While reading them they get inserted in the \
|
|
table and later not removed when something goes wrong with \
|
|
reading its weights. */ \
|
|
value += 1 + runp->ordering[cnt]; \
|
|
\
|
|
if (runp->name[1] == L'\0') \
|
|
has_simple = runp; \
|
|
\
|
|
ADD_ELEMENT (runp, value); \
|
|
} \
|
|
\
|
|
if (has_simple == NULL) \
|
|
{ \
|
|
size_t idx, cnt; \
|
|
\
|
|
ADD_VALUE (collate->undefined_len + 1); \
|
|
\
|
|
/* Add the name. */ \
|
|
ADD_VALUE ((pelem)->name[0]); \
|
|
ADD_VALUE (0); \
|
|
\
|
|
idx = collate->nrules; \
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt) \
|
|
{ \
|
|
size_t disp; \
|
|
\
|
|
ADD_VALUE (collate->undefined.ordering[cnt]); \
|
|
for (disp = 0; disp < collate->undefined.ordering[cnt]; ++disp) \
|
|
{ \
|
|
if ((wchar_t) collate->undefined.ordering[idx] \
|
|
== ELLIPSIS_CHAR) \
|
|
ADD_VALUE ((pelem)->name[0]); \
|
|
else \
|
|
ADD_VALUE (collate->undefined.ordering[idx++]); \
|
|
++idx; \
|
|
} \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
|
|
/* Fill the table now. First we look for all the characters which
|
|
fit into one single byte. This speeds up the 8-bit string
|
|
functions. */
|
|
last = NULL;
|
|
while (iterate_table (&collate->result, &last, (const void **) &name,
|
|
&len, (void **) &pelem) >= 0)
|
|
if (pelem->name[0] <= 0xff)
|
|
{
|
|
/* We have a single byte name. Now we must distinguish
|
|
between entries in simple form (i.e., only one value per
|
|
weight and no collation element starting with the same
|
|
character) and those which are not. */
|
|
size_t slot = ((size_t) pelem->name[0]);
|
|
const size_t level = 0;
|
|
|
|
table[slot * entry_size] = pelem->name[0];
|
|
|
|
if (pelem->name[1] == L'\0' && pelem->next == NULL
|
|
&& pelem->ordering_len == collate->nrules)
|
|
{
|
|
/* Yes, we have a simple one. Lucky us. */
|
|
size_t cnt;
|
|
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
table[slot * entry_size + 1 + cnt]
|
|
= pelem->ordering[collate->nrules + cnt];
|
|
}
|
|
else
|
|
ADD_FORWARD (pelem);
|
|
}
|
|
|
|
/* Now check for missing single byte entries. If one exist we fill
|
|
with the UNDEFINED entry. */
|
|
for (cnt = 0; cnt < 256; ++cnt)
|
|
/* The first weight is never 0 for existing entries. */
|
|
if (table[cnt * entry_size + 1] == 0)
|
|
{
|
|
/* We have to fill in the information from the UNDEFINED
|
|
entry. */
|
|
table[cnt * entry_size] = (u_int32_t) cnt;
|
|
|
|
if (collate->undefined.ordering_len == collate->nrules)
|
|
{
|
|
size_t inner;
|
|
|
|
for (inner = 0; inner < collate->nrules; ++inner)
|
|
if ((wchar_t)collate->undefined.ordering[collate->nrules + inner]
|
|
== ELLIPSIS_CHAR)
|
|
table[cnt * entry_size + 1 + inner] = cnt;
|
|
else
|
|
table[cnt * entry_size + 1 + inner]
|
|
= collate->undefined.ordering[collate->nrules + inner];
|
|
}
|
|
else
|
|
{
|
|
if (undefined_offset != UINT_MAX)
|
|
{
|
|
table[cnt * entry_size + 1] = FORWARD_CHAR;
|
|
table[cnt * entry_size + 2] = undefined_offset;
|
|
}
|
|
else
|
|
{
|
|
const size_t slot = cnt;
|
|
const size_t level = 0;
|
|
|
|
ADD_FORWARD (&collate->undefined);
|
|
undefined_offset = table[cnt * entry_size + 2];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now we are ready for inserting the whole rest. */
|
|
last = NULL;
|
|
while (iterate_table (&collate->result, &last, (const void **) &name,
|
|
&len, (void **) &pelem) >= 0)
|
|
if (pelem->name[0] > 0xff)
|
|
{
|
|
/* Find the position. */
|
|
size_t slot = ((size_t) pelem->name[0]) % table_best;
|
|
size_t level = 0;
|
|
|
|
while (table[(level * table_best + slot) * entry_size + 1] != 0)
|
|
++level;
|
|
assert (level < level_best);
|
|
|
|
if (pelem->name[1] == L'\0' && pelem->next == NULL
|
|
&& pelem->ordering_len == collate->nrules)
|
|
{
|
|
/* Again a simple entry. */
|
|
size_t inner;
|
|
|
|
for (inner = 0; inner < collate->nrules; ++inner)
|
|
table[(level * table_best + slot) * entry_size + 1 + inner]
|
|
= pelem->ordering[collate->nrules + inner];
|
|
}
|
|
else
|
|
ADD_FORWARD (pelem);
|
|
}
|
|
|
|
/* Add the UNDEFINED entry. */
|
|
{
|
|
/* Here we have to construct the non-simple table entry. */
|
|
size_t idx, cnt;
|
|
|
|
undefined_offset = obstack_object_size (&non_simple);
|
|
assert (undefined_offset % sizeof (u_int32_t) == 0);
|
|
undefined_offset /= sizeof (u_int32_t);
|
|
|
|
idx = collate->nrules;
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
{
|
|
size_t disp;
|
|
|
|
ADD_VALUE (collate->undefined.ordering[cnt]);
|
|
for (disp = 0; disp < collate->undefined.ordering[cnt]; ++disp)
|
|
ADD_VALUE (collate->undefined.ordering[idx++]);
|
|
}
|
|
}
|
|
|
|
/* Finish the extra block. */
|
|
extra_len = obstack_object_size (&non_simple);
|
|
extra = (u_int32_t *) obstack_finish (&non_simple);
|
|
assert ((extra_len % sizeof (u_int32_t)) == 0);
|
|
|
|
/* Now we have to build the two array for the other byte ordering. */
|
|
table2 = (u_int32_t *) alloca (table_best * level_best * entry_size
|
|
* sizeof (table[0]));
|
|
extra2 = (u_int32_t *) alloca (extra_len);
|
|
|
|
for (cnt = 0; cnt < table_best * level_best * entry_size; ++cnt)
|
|
table2[cnt] = SWAPU32 (table[cnt]);
|
|
|
|
for (cnt = 0; cnt < extra_len / sizeof (u_int32_t); ++cnt)
|
|
extra2[cnt] = SWAPU32 (extra[cnt]);
|
|
|
|
/* We need a simple hashing table to get a collation-element->chars
|
|
mapping. We again use internal hashing using a secondary hashing
|
|
function.
|
|
|
|
Each string has an associate hashing value V, computed by a
|
|
fixed function. To locate the string we use open addressing with
|
|
double hashing. The first index will be V % M, where M is the
|
|
size of the hashing table. If no entry is found, iterating with
|
|
a second, independent hashing function takes place. This second
|
|
value will be 1 + V % (M - 2). The approximate number of probes
|
|
will be
|
|
|
|
for unsuccessful search: (1 - N / M) ^ -1
|
|
for successful search: - (N / M) ^ -1 * ln (1 - N / M)
|
|
|
|
where N is the number of keys.
|
|
|
|
If we now choose M to be the next prime bigger than 4 / 3 * N,
|
|
we get the values 4 and 1.85 resp. Because unsuccessful searches
|
|
are unlikely this is a good value. Formulas: [Knuth, The Art of
|
|
Computer Programming, Volume 3, Sorting and Searching, 1973,
|
|
Addison Wesley] */
|
|
if (collate->elements.filled == 0)
|
|
{
|
|
/* We don't need any element table since there are no collating
|
|
elements. */
|
|
element_hash_tab_size = 0;
|
|
element_hash_tab = NULL;
|
|
element_hash_tab_ob = NULL;
|
|
element_string_pool_size = 0;
|
|
element_string_pool = NULL;
|
|
element_value_size = 0;
|
|
element_value = NULL;
|
|
element_value_ob = NULL;
|
|
}
|
|
else
|
|
{
|
|
void *ptr; /* Running pointer. */
|
|
const char *key; /* Key for current bucket. */
|
|
size_t keylen; /* Length of key data. */
|
|
const element_t *data; /* Data, i.e., the character sequence. */
|
|
|
|
element_hash_tab_size = next_prime ((collate->elements.filled * 4) / 3);
|
|
if (element_hash_tab_size < 7)
|
|
/* We need a minimum to make the following code work. */
|
|
element_hash_tab_size = 7;
|
|
|
|
element_hash_tab = obstack_alloc (&non_simple, (2 * element_hash_tab_size
|
|
* sizeof (u_int32_t)));
|
|
memset (element_hash_tab, '\377', (2 * element_hash_tab_size
|
|
* sizeof (u_int32_t)));
|
|
|
|
ptr = NULL;
|
|
while (iterate_table (&collate->elements, &ptr, (const void **) &key,
|
|
&keylen, (void **) &data) == 0)
|
|
{
|
|
size_t hash_val = hash_string (key, keylen);
|
|
size_t idx = hash_val % element_hash_tab_size;
|
|
|
|
if (element_hash_tab[2 * idx] != (~((u_int32_t) 0)))
|
|
{
|
|
/* We need the second hashing function. */
|
|
size_t c = 1 + (hash_val % (element_hash_tab_size - 2));
|
|
|
|
do
|
|
if (idx >= element_hash_tab_size - c)
|
|
idx -= element_hash_tab_size - c;
|
|
else
|
|
idx += c;
|
|
while (element_hash_tab[2 * idx] != (~((u_int32_t) 0)));
|
|
}
|
|
|
|
element_hash_tab[2 * idx] = obstack_object_size (&non_simple);
|
|
element_hash_tab[2 * idx + 1] = (obstack_object_size (&string_pool)
|
|
/ sizeof (wchar_t));
|
|
|
|
obstack_grow0 (&non_simple, key, keylen);
|
|
obstack_grow (&string_pool, data->name,
|
|
(wcslen (data->name) + 1) * sizeof (wchar_t));
|
|
}
|
|
|
|
if (obstack_object_size (&non_simple) % 4 != 0)
|
|
obstack_blank (&non_simple,
|
|
4 - (obstack_object_size (&non_simple) % 4));
|
|
element_string_pool_size = obstack_object_size (&non_simple);
|
|
element_string_pool = obstack_finish (&non_simple);
|
|
|
|
element_value_size = obstack_object_size (&string_pool);
|
|
element_value = obstack_finish (&string_pool);
|
|
|
|
/* Create the tables for the other byte order. */
|
|
element_hash_tab_ob = obstack_alloc (&non_simple,
|
|
(2 * element_hash_tab_size
|
|
* sizeof (u_int32_t)));
|
|
for (cnt = 0; cnt < 2 * element_hash_tab_size; ++cnt)
|
|
element_hash_tab_ob[cnt] = SWAPU32 (element_hash_tab[cnt]);
|
|
|
|
element_value_ob = obstack_alloc (&string_pool, element_value_size);
|
|
if (sizeof (wchar_t) != 4)
|
|
{
|
|
fputs ("sizeof (wchar_t) != 4 currently not handled", stderr);
|
|
abort ();
|
|
}
|
|
for (cnt = 0; cnt < element_value_size / 4; ++cnt)
|
|
element_value_ob[cnt] = SWAPU32 (element_value[cnt]);
|
|
}
|
|
|
|
/* Store collation elements as map to collation class. There are
|
|
three kinds of symbols:
|
|
- simple characters
|
|
- collation elements
|
|
- collation symbols
|
|
We need to make a table which lets the user to access the primary
|
|
weight based on the symbol string. */
|
|
symbols_hash_tab_size = next_prime ((4 * (charset->char_table.filled
|
|
+ collate->elements.filled
|
|
+ collate->symbols.filled)) / 3);
|
|
symbols_hash_tab = obstack_alloc (&non_simple, (2 * symbols_hash_tab_size
|
|
* sizeof (u_int32_t)));
|
|
memset (symbols_hash_tab, '\377', (2 * symbols_hash_tab_size
|
|
* sizeof (u_int32_t)));
|
|
|
|
/* Now fill the array. First the symbols from the character set,
|
|
then the collation elements and last the collation symbols. */
|
|
hash_tab = &charset->char_table;
|
|
while (1)
|
|
{
|
|
void *ptr; /* Running pointer. */
|
|
const char *key; /* Key for current bucket. */
|
|
size_t keylen; /* Length of key data. */
|
|
void *data; /* Data. */
|
|
|
|
ptr = NULL;
|
|
while (iterate_table (hash_tab, &ptr, (const void **) &key,
|
|
&keylen, (void **) &data) == 0)
|
|
{
|
|
size_t hash_val;
|
|
size_t idx;
|
|
u_int32_t word;
|
|
unsigned int *weights;
|
|
|
|
if (hash_tab == &charset->char_table
|
|
|| hash_tab == &collate->elements)
|
|
{
|
|
element_t *lastp, *firstp;
|
|
wchar_t dummy_name[2];
|
|
const wchar_t *name;
|
|
size_t name_len;
|
|
|
|
if (hash_tab == &charset->char_table)
|
|
{
|
|
dummy_name[0] = (wchar_t) ((unsigned long int) data);
|
|
dummy_name[1] = L'\0';
|
|
name = dummy_name;
|
|
name_len = sizeof (wchar_t);
|
|
}
|
|
else
|
|
{
|
|
element_t *elemp = (element_t *) data;
|
|
name = elemp->name;
|
|
name_len = wcslen (name) * sizeof (wchar_t);
|
|
}
|
|
|
|
/* First check whether this character is used at all. */
|
|
if (find_entry (&collate->result, name, name_len,
|
|
(void *) &firstp) < 0)
|
|
/* The symbol is not directly mentioned in the collation.
|
|
I.e., we use the value for UNDEFINED. */
|
|
lastp = &collate->undefined;
|
|
else
|
|
{
|
|
/* The entry for the simple character is always found at
|
|
the end. */
|
|
lastp = firstp;
|
|
while (lastp->next != NULL && wcscmp (name, lastp->name))
|
|
lastp = lastp->next;
|
|
if (lastp->ordering == NULL)
|
|
lastp = &collate->undefined;
|
|
}
|
|
|
|
weights = lastp->ordering;
|
|
}
|
|
else
|
|
{
|
|
dummy_weights[0] = 1;
|
|
dummy_weights[collate->nrules]
|
|
= (unsigned int) ((unsigned long int) data);
|
|
|
|
weights = dummy_weights;
|
|
}
|
|
|
|
/* In LASTP->ordering we now have the collation class.
|
|
Determine the place in the hashing table next. */
|
|
hash_val = hash_string (key, keylen);
|
|
idx = hash_val % symbols_hash_tab_size;
|
|
|
|
if (symbols_hash_tab[2 * idx] != (~((u_int32_t) 0)))
|
|
{
|
|
/* We need the second hashing function. */
|
|
size_t c = 1 + (hash_val % (symbols_hash_tab_size - 2));
|
|
|
|
do
|
|
if (idx >= symbols_hash_tab_size - c)
|
|
idx -= symbols_hash_tab_size - c;
|
|
else
|
|
idx += c;
|
|
while (symbols_hash_tab[2 * idx] != (~((u_int32_t) 0)));
|
|
}
|
|
|
|
symbols_hash_tab[2 * idx] = obstack_object_size (&string_pool);
|
|
symbols_hash_tab[2 * idx + 1] = (obstack_object_size (&non_simple)
|
|
/ sizeof (u_int32_t));
|
|
|
|
obstack_grow0 (&string_pool, key, keylen);
|
|
/* Adding the first weight looks complicated. We have to deal
|
|
with the kind it is stored and with the fact that original
|
|
form uses `unsigned int's while we need `u_int32_t' here. */
|
|
word = weights[0];
|
|
obstack_grow (&non_simple, &word, sizeof (u_int32_t));
|
|
for (cnt = 0; cnt < weights[0]; ++cnt)
|
|
{
|
|
word = weights[collate->nrules + cnt];
|
|
obstack_grow (&non_simple, &word, sizeof (u_int32_t));
|
|
}
|
|
}
|
|
|
|
if (hash_tab == &charset->char_table)
|
|
hash_tab = &collate->elements;
|
|
else if (hash_tab == &collate->elements)
|
|
hash_tab = &collate->symbols;
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* Now we have the complete tables. */
|
|
if (obstack_object_size (&string_pool) % 4 != 0)
|
|
obstack_blank (&non_simple, 4 - (obstack_object_size (&string_pool) % 4));
|
|
symbols_string_pool_size = obstack_object_size (&string_pool);
|
|
symbols_string_pool = obstack_finish (&string_pool);
|
|
|
|
symbols_class_size = obstack_object_size (&non_simple);
|
|
symbols_class = obstack_finish (&non_simple);
|
|
|
|
/* Generate tables with other byte order. */
|
|
symbols_hash_tab_ob = obstack_alloc (&non_simple, (2 * symbols_hash_tab_size
|
|
* sizeof (u_int32_t)));
|
|
for (cnt = 0; cnt < 2 * symbols_hash_tab_size; ++cnt)
|
|
symbols_hash_tab_ob[cnt] = SWAPU32 (symbols_hash_tab[cnt]);
|
|
|
|
symbols_class_ob = obstack_alloc (&non_simple, symbols_class_size);
|
|
for (cnt = 0; cnt < symbols_class_size / 4; ++cnt)
|
|
symbols_class_ob[cnt] = SWAPU32 (symbols_class[cnt]);
|
|
|
|
|
|
/* Store table addresses and lengths. */
|
|
#if __BYTE_ORDER == __BIG_ENDIAN
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_TABLE_EB)].iov_base = table;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_TABLE_EB)].iov_len
|
|
= table_best * level_best * entry_size * sizeof (table[0]);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_TABLE_EL)].iov_base = table2;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_TABLE_EL)].iov_len
|
|
= table_best * level_best * entry_size * sizeof (table[0]);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_EXTRA_EB)].iov_base = extra;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_EXTRA_EB)].iov_len = extra_len;
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_EXTRA_EL)].iov_base = extra2;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_EXTRA_EL)].iov_len = extra_len;
|
|
#else
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_TABLE_EB)].iov_base = table2;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_TABLE_EB)].iov_len
|
|
= table_best * level_best * entry_size * sizeof (table[0]);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_TABLE_EL)].iov_base = table;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_TABLE_EL)].iov_len
|
|
= table_best * level_best * entry_size * sizeof (table[0]);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_EXTRA_EB)].iov_base = extra2;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_EXTRA_EB)].iov_len = extra_len;
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_EXTRA_EL)].iov_base = extra;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_EXTRA_EL)].iov_len = extra_len;
|
|
#endif
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_UNDEFINED)].iov_base = &undefined_offset;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_UNDEFINED)].iov_len = sizeof (u_int32_t);
|
|
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_SIZE)].iov_base
|
|
= &element_hash_tab_size;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_SIZE)].iov_len
|
|
= sizeof (u_int32_t);
|
|
|
|
#if __BYTE_ORDER == __BIG_ENDIAN
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_EB)].iov_base
|
|
= element_hash_tab;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_EB)].iov_len
|
|
= 2 * element_hash_tab_size * sizeof (u_int32_t);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_EL)].iov_base
|
|
= element_hash_tab_ob;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_EL)].iov_len
|
|
= 2 * element_hash_tab_size * sizeof (u_int32_t);
|
|
#else
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_EL)].iov_base
|
|
= element_hash_tab;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_EL)].iov_len
|
|
= 2 * element_hash_tab_size * sizeof (u_int32_t);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_EB)].iov_base
|
|
= element_hash_tab_ob;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_HASH_EB)].iov_len
|
|
= 2 * element_hash_tab_size * sizeof (u_int32_t);
|
|
#endif
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_STR_POOL)].iov_base
|
|
= element_string_pool;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_STR_POOL)].iov_len
|
|
= element_string_pool_size;
|
|
|
|
#if __BYTE_ORDER == __BIG_ENDIAN
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_VAL_EB)].iov_base
|
|
= element_value;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_VAL_EB)].iov_len
|
|
= element_value_size;
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_VAL_EL)].iov_base
|
|
= element_value_ob;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_VAL_EL)].iov_len
|
|
= element_value_size;
|
|
#else
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_VAL_EL)].iov_base
|
|
= element_value;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_VAL_EL)].iov_len
|
|
= element_value_size;
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_VAL_EB)].iov_base
|
|
= element_value_ob;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_ELEM_VAL_EB)].iov_len
|
|
= element_value_size;
|
|
#endif
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_SIZE)].iov_base
|
|
= &symbols_hash_tab_size;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_SIZE)].iov_len
|
|
= sizeof (u_int32_t);
|
|
|
|
#if __BYTE_ORDER == __BIG_ENDIAN
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_EB)].iov_base
|
|
= symbols_hash_tab;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_EB)].iov_len
|
|
= 2 * symbols_hash_tab_size * sizeof (u_int32_t);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_EL)].iov_base
|
|
= symbols_hash_tab_ob;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_EL)].iov_len
|
|
= 2 * symbols_hash_tab_size * sizeof (u_int32_t);
|
|
#else
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_EL)].iov_base
|
|
= symbols_hash_tab;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_EL)].iov_len
|
|
= 2 * symbols_hash_tab_size * sizeof (u_int32_t);
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_EB)].iov_base
|
|
= symbols_hash_tab_ob;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_HASH_EB)].iov_len
|
|
= 2 * symbols_hash_tab_size * sizeof (u_int32_t);
|
|
#endif
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_STR_POOL)].iov_base
|
|
= symbols_string_pool;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_STR_POOL)].iov_len
|
|
= symbols_string_pool_size;
|
|
|
|
#if __BYTE_ORDER == __BIG_ENDIAN
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_CLASS_EB)].iov_base
|
|
= symbols_class;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_CLASS_EB)].iov_len
|
|
= symbols_class_size;
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_CLASS_EL)].iov_base
|
|
= symbols_class_ob;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_CLASS_EL)].iov_len
|
|
= symbols_class_size;
|
|
#else
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_CLASS_EL)].iov_base
|
|
= symbols_class;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_CLASS_EL)].iov_len
|
|
= symbols_class_size;
|
|
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_CLASS_EB)].iov_base
|
|
= symbols_class_ob;
|
|
iov[2 + _NL_ITEM_INDEX (_NL_COLLATE_SYMB_CLASS_EB)].iov_len
|
|
= symbols_class_size;
|
|
#endif
|
|
|
|
/* Update idx array. */
|
|
idx[0] = iov[0].iov_len + iov[1].iov_len;
|
|
for (cnt = 1; cnt < nelems; ++cnt)
|
|
idx[cnt] = idx[cnt - 1] + iov[1 + cnt].iov_len;
|
|
|
|
write_locale_data (output_path, "LC_COLLATE", 2 + nelems, iov);
|
|
|
|
obstack_free (&non_simple, NULL);
|
|
obstack_free (&string_pool, NULL);
|
|
}
|
|
|
|
|
|
void
|
|
collate_element_to (struct linereader *lr, struct localedef_t *locale,
|
|
struct token *code, struct charset_t *charset)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
unsigned int value;
|
|
void *not_used;
|
|
|
|
if (collate->combine_token != NULL)
|
|
{
|
|
free ((void *) collate->combine_token);
|
|
collate->combine_token = NULL;
|
|
}
|
|
|
|
value = charset_find_value (&charset->char_table, code->val.str.start,
|
|
code->val.str.len);
|
|
if ((wchar_t) value != ILLEGAL_CHAR_VALUE)
|
|
{
|
|
lr_error (lr, _("symbol for multicharacter collating element "
|
|
"`%.*s' duplicates symbolic name in charset"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
return;
|
|
}
|
|
|
|
if (find_entry (&collate->elements, code->val.str.start, code->val.str.len,
|
|
¬_used) >= 0)
|
|
{
|
|
lr_error (lr, _("symbol for multicharacter collating element "
|
|
"`%.*s' duplicates element definition"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
return;
|
|
}
|
|
|
|
if (find_entry (&collate->elements, code->val.str.start, code->val.str.len,
|
|
¬_used) >= 0)
|
|
{
|
|
lr_error (lr, _("symbol for multicharacter collating element "
|
|
"`%.*s' duplicates symbol definition"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
return;
|
|
}
|
|
|
|
collate->combine_token = code->val.str.start;
|
|
collate->combine_token_len = code->val.str.len;
|
|
}
|
|
|
|
|
|
void
|
|
collate_element_from (struct linereader *lr, struct localedef_t *locale,
|
|
struct token *code, struct charset_t *charset)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
element_t *elemp, *runp;
|
|
|
|
/* CODE is a string. */
|
|
elemp = (element_t *) obstack_alloc (&collate->element_mem,
|
|
sizeof (element_t));
|
|
|
|
/* We have to translate the string. It may contain <...> character
|
|
names. */
|
|
elemp->name = (wchar_t *) translate_string (code->val.str.start, charset);
|
|
elemp->this_weight = 0;
|
|
elemp->ordering = NULL;
|
|
elemp->ordering_len = 0;
|
|
|
|
free (code->val.str.start);
|
|
|
|
if (elemp->name == NULL)
|
|
{
|
|
/* At least one character in the string is not defined. We simply
|
|
do nothing. */
|
|
if (verbose)
|
|
lr_error (lr, _("\
|
|
`from' string in collation element declaration contains unknown character"));
|
|
return;
|
|
}
|
|
|
|
if (elemp->name[0] == L'\0' || elemp->name[1] == L'\0')
|
|
{
|
|
lr_error (lr, _("illegal collation element"));
|
|
return;
|
|
}
|
|
|
|
/* The entries in the linked lists of RESULT are sorting in
|
|
descending order. The order is important for the `strcoll' and
|
|
`wcscoll' functions. */
|
|
if (find_entry (&collate->result, elemp->name, sizeof (wchar_t),
|
|
(void *) &runp) >= 0)
|
|
{
|
|
/* We already have an entry with this key. Check whether it is
|
|
identical. */
|
|
element_t *prevp = NULL;
|
|
int cmpres;
|
|
|
|
do
|
|
{
|
|
cmpres = wcscmp (elemp->name, runp->name);
|
|
if (cmpres <= 0)
|
|
break;
|
|
prevp = runp;
|
|
}
|
|
while ((runp = runp->next) != NULL);
|
|
|
|
if (cmpres == 0)
|
|
lr_error (lr, _("duplicate collating element definition"));
|
|
else
|
|
{
|
|
elemp->next = runp;
|
|
if (prevp == NULL)
|
|
{
|
|
if (set_entry (&collate->result, elemp->name, sizeof (wchar_t),
|
|
elemp) < 0)
|
|
error (EXIT_FAILURE, 0, _("\
|
|
error while inserting collation element into hash table"));
|
|
}
|
|
else
|
|
prevp->next = elemp;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
elemp->next = NULL;
|
|
if (insert_entry (&collate->result, elemp->name, sizeof (wchar_t), elemp)
|
|
< 0)
|
|
error (EXIT_FAILURE, errno, _("error while inserting to hash table"));
|
|
}
|
|
|
|
if (insert_entry (&collate->elements, collate->combine_token,
|
|
collate->combine_token_len, (void *) elemp) < 0)
|
|
lr_error (lr, _("cannot insert new collating symbol definition: %s"),
|
|
strerror (errno));
|
|
}
|
|
|
|
|
|
void
|
|
collate_symbol (struct linereader *lr, struct localedef_t *locale,
|
|
struct token *code, struct charset_t *charset)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
wchar_t value;
|
|
void *not_used;
|
|
|
|
value = charset_find_value (&charset->char_table, code->val.str.start,
|
|
code->val.str.len);
|
|
if (value != ILLEGAL_CHAR_VALUE)
|
|
{
|
|
lr_error (lr, _("symbol for multicharacter collating element "
|
|
"`%.*s' duplicates symbolic name in charset"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
return;
|
|
}
|
|
|
|
if (find_entry (&collate->elements, code->val.str.start, code->val.str.len,
|
|
¬_used) >= 0)
|
|
{
|
|
lr_error (lr, _("symbol for multicharacter collating element "
|
|
"`%.*s' duplicates element definition"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
return;
|
|
}
|
|
|
|
if (find_entry (&collate->symbols, code->val.str.start, code->val.str.len,
|
|
¬_used) >= 0)
|
|
{
|
|
lr_error (lr, _("symbol for multicharacter collating element "
|
|
"`%.*s' duplicates other symbol definition"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
return;
|
|
}
|
|
|
|
if (insert_entry (&collate->symbols, code->val.str.start, code->val.str.len,
|
|
(void *) 0) < 0)
|
|
lr_error (lr, _("cannot insert new collating symbol definition: %s"),
|
|
strerror (errno));
|
|
}
|
|
|
|
|
|
void
|
|
collate_new_order (struct linereader *lr, struct localedef_t *locale,
|
|
enum coll_sort_rule sort_rule)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
|
|
if (collate->nrules >= collate->nrules_max)
|
|
{
|
|
collate->nrules_max *= 2;
|
|
collate->rules
|
|
= (enum coll_sort_rule *) xrealloc (collate->rules,
|
|
collate->nrules_max
|
|
* sizeof (enum coll_sort_rule));
|
|
}
|
|
|
|
collate->rules[collate->nrules++] = sort_rule;
|
|
}
|
|
|
|
|
|
void
|
|
collate_build_arrays (struct linereader *lr, struct localedef_t *locale)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
|
|
collate->rules
|
|
= (enum coll_sort_rule *) xrealloc (collate->rules,
|
|
collate->nrules
|
|
* sizeof (enum coll_sort_rule));
|
|
|
|
/* Allocate arrays for temporary weights. */
|
|
collate->weight_cnt = (int *) xmalloc (collate->nrules * sizeof (int));
|
|
|
|
/* Choose arbitrary start value for table size. */
|
|
collate->nweight_max = 5 * collate->nrules;
|
|
collate->weight = (int *) xmalloc (collate->nweight_max * sizeof (int));
|
|
}
|
|
|
|
|
|
int
|
|
collate_order_elem (struct linereader *lr, struct localedef_t *locale,
|
|
struct token *code, struct charset_t *charset)
|
|
{
|
|
const wchar_t zero = L'\0';
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
int result = 0;
|
|
wchar_t value;
|
|
void *tmp;
|
|
unsigned int i;
|
|
|
|
switch (code->tok)
|
|
{
|
|
case tok_bsymbol:
|
|
/* We have a string to find in one of the three hashing tables. */
|
|
value = charset_find_value (&charset->char_table, code->val.str.start,
|
|
code->val.str.len);
|
|
if (value != ILLEGAL_CHAR_VALUE)
|
|
{
|
|
element_t *lastp, *firstp;
|
|
|
|
collate->kind = character;
|
|
|
|
if (find_entry (&collate->result, &value, sizeof (wchar_t),
|
|
(void *) &firstp) < 0)
|
|
firstp = lastp = NULL;
|
|
else
|
|
{
|
|
/* The entry for the simple character is always found at
|
|
the end. */
|
|
lastp = firstp;
|
|
while (lastp->next != NULL)
|
|
lastp = lastp->next;
|
|
|
|
if (lastp->name[0] == value && lastp->name[1] == L'\0')
|
|
{
|
|
lr_error (lr, _("duplicate definition for character `%.*s'"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
lr_ignore_rest (lr, 0);
|
|
result = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
collate->current_element
|
|
= (element_t *) obstack_alloc (&collate->element_mem,
|
|
sizeof (element_t));
|
|
|
|
obstack_grow (&collate->element_mem, &value, sizeof (value));
|
|
obstack_grow (&collate->element_mem, &zero, sizeof (zero));
|
|
|
|
collate->current_element->name =
|
|
(const wchar_t *) obstack_finish (&collate->element_mem);
|
|
|
|
collate->current_element->this_weight = ++collate->order_cnt;
|
|
|
|
collate->current_element->next = NULL;
|
|
|
|
if (firstp == NULL)
|
|
{
|
|
if (insert_entry (&collate->result, &value, sizeof (wchar_t),
|
|
(void *) collate->current_element) < 0)
|
|
{
|
|
lr_error (lr, _("cannot insert collation element `%.*s'"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
exit (4);
|
|
}
|
|
}
|
|
else
|
|
lastp->next = collate->current_element;
|
|
}
|
|
else if (find_entry (&collate->elements, code->val.str.start,
|
|
code->val.str.len, &tmp) >= 0)
|
|
{
|
|
collate->current_element = (element_t *) tmp;
|
|
|
|
if (collate->current_element->this_weight != 0)
|
|
{
|
|
lr_error (lr, _("\
|
|
collation element `%.*s' appears more than once: ignore line"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
lr_ignore_rest (lr, 0);
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
collate->kind = element;
|
|
collate->current_element->this_weight = ++collate->order_cnt;
|
|
}
|
|
else if (find_entry (&collate->symbols, code->val.str.start,
|
|
code->val.str.len, &tmp) >= 0)
|
|
{
|
|
unsigned int order = ++collate->order_cnt;
|
|
|
|
if ((unsigned long int) tmp != 0ul)
|
|
{
|
|
lr_error (lr, _("\
|
|
collation symbol `%.*s' appears more than once: ignore line"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
lr_ignore_rest (lr, 0);
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
collate->kind = symbol;
|
|
|
|
if (set_entry (&collate->symbols, code->val.str.start,
|
|
code->val.str.len, (void *) order) < 0)
|
|
{
|
|
lr_error (lr, _("cannot process order specification"));
|
|
exit (4);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (verbose)
|
|
lr_error (lr, _("unknown symbol `%.*s': line ignored"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
lr_ignore_rest (lr, 0);
|
|
|
|
result = -1;
|
|
}
|
|
break;
|
|
|
|
case tok_undefined:
|
|
collate->kind = undefined;
|
|
collate->current_element = &collate->undefined;
|
|
break;
|
|
|
|
case tok_ellipsis:
|
|
if (collate->was_ellipsis)
|
|
{
|
|
lr_error (lr, _("\
|
|
two lines in a row containing `...' are not allowed"));
|
|
result = -1;
|
|
}
|
|
else if (collate->kind != character)
|
|
{
|
|
/* An ellipsis requires the previous line to be an
|
|
character definition. */
|
|
lr_error (lr, _("\
|
|
line before ellipsis does not contain definition for character constant"));
|
|
lr_ignore_rest (lr, 0);
|
|
result = -1;
|
|
}
|
|
else
|
|
collate->kind = ellipsis;
|
|
break;
|
|
|
|
default:
|
|
assert (! "illegal token in `collate_order_elem'");
|
|
}
|
|
|
|
/* Now it's time to handle the ellipsis in the previous line. We do
|
|
this only when the last line contained an definition for a
|
|
character, the current line also defines an character, the
|
|
character code for the later is bigger than the former. */
|
|
if (collate->was_ellipsis)
|
|
{
|
|
if (collate->kind != character)
|
|
{
|
|
lr_error (lr, _("\
|
|
line after ellipsis must contain character definition"));
|
|
lr_ignore_rest (lr, 0);
|
|
result = -1;
|
|
}
|
|
else if (collate->last_char > value)
|
|
{
|
|
lr_error (lr, _("end point of ellipsis range is bigger then start"));
|
|
lr_ignore_rest (lr, 0);
|
|
result = -1;
|
|
}
|
|
else
|
|
{
|
|
/* We can fill the arrays with the information we need. */
|
|
wchar_t name[2];
|
|
unsigned int *data;
|
|
size_t *ptr;
|
|
size_t cnt;
|
|
|
|
name[0] = collate->last_char + 1;
|
|
name[1] = L'\0';
|
|
|
|
data = (unsigned int *) alloca ((collate->nrules + collate->nweight)
|
|
* sizeof (unsigned int));
|
|
ptr = (size_t *) alloca (collate->nrules * sizeof (size_t));
|
|
|
|
if (data == NULL || ptr == NULL)
|
|
error (4, 0, _("memory exhausted"));
|
|
|
|
/* Prepare data. Because the characters covered by an
|
|
ellipsis all have equal values we prepare the data once
|
|
and only change the variable number (if there are any).
|
|
PTR[...] will point to the entries which will have to be
|
|
fixed during the output loop. */
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
{
|
|
data[cnt] = collate->weight_cnt[cnt];
|
|
ptr[cnt] = (cnt == 0
|
|
? collate->nweight
|
|
: ptr[cnt - 1] + collate->weight_cnt[cnt - 1]);
|
|
}
|
|
|
|
for (cnt = 0; cnt < collate->nweight; ++cnt)
|
|
data[collate->nrules + cnt] = collate->weight[cnt];
|
|
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
if ((wchar_t) data[ptr[cnt]] != ELLIPSIS_CHAR)
|
|
ptr[cnt] = 0;
|
|
|
|
while (name[0] <= value)
|
|
{
|
|
element_t *pelem;
|
|
|
|
pelem = (element_t *) obstack_alloc (&collate->element_mem,
|
|
sizeof (element_t));
|
|
if (pelem == NULL)
|
|
error (4, 0, _("memory exhausted"));
|
|
|
|
pelem->name
|
|
= (const wchar_t *) obstack_copy (&collate->element_mem,
|
|
name, 2 * sizeof (wchar_t));
|
|
pelem->this_weight = ++collate->order_cnt;
|
|
|
|
pelem->ordering_len = collate->nweight;
|
|
pelem->ordering
|
|
= (unsigned int *) obstack_copy (&collate->element_mem, data,
|
|
(collate->nrules
|
|
+ pelem->ordering_len)
|
|
* sizeof (unsigned int));
|
|
|
|
/* `...' weights need to be adjusted. */
|
|
for (cnt = 0; cnt < collate->nrules; ++cnt)
|
|
if (ptr[cnt] != 0)
|
|
pelem->ordering[ptr[cnt]] = pelem->this_weight;
|
|
|
|
/* Insert new entry into result table. */
|
|
if (find_entry (&collate->result, name, sizeof (wchar_t),
|
|
(void *) &pelem->next) >= 0)
|
|
{
|
|
if (set_entry (&collate->result, name, sizeof (wchar_t),
|
|
(void *) pelem) < 0)
|
|
error (4, 0, _("cannot insert into result table"));
|
|
}
|
|
else
|
|
{
|
|
pelem->next = NULL;
|
|
if (insert_entry (&collate->result, name, sizeof (wchar_t),
|
|
(void *) pelem) < 0)
|
|
error (4, 0, _("cannot insert into result table"));
|
|
}
|
|
|
|
/* Increment counter. */
|
|
++name[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset counters for weights. */
|
|
collate->weight_idx = 0;
|
|
collate->nweight = 0;
|
|
for (i = 0; i < collate->nrules; ++i)
|
|
collate->weight_cnt[i] = 0;
|
|
collate->current_patch = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
int
|
|
collate_weight_bsymbol (struct linereader *lr, struct localedef_t *locale,
|
|
struct token *code, struct charset_t *charset)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
unsigned int here_weight;
|
|
wchar_t value;
|
|
void *tmp;
|
|
|
|
assert (code->tok == tok_bsymbol);
|
|
|
|
value = charset_find_value (&charset->char_table, code->val.str.start,
|
|
code->val.str.len);
|
|
if (value != ILLEGAL_CHAR_VALUE)
|
|
{
|
|
element_t *runp;
|
|
|
|
if (find_entry (&collate->result, &value, sizeof (wchar_t),
|
|
(void *)&runp) < 0)
|
|
runp = NULL;
|
|
|
|
while (runp != NULL
|
|
&& (runp->name[0] != value || runp->name[1] != L'\0'))
|
|
runp = runp->next;
|
|
|
|
here_weight = runp == NULL ? 0 : runp->this_weight;
|
|
}
|
|
else if (find_entry (&collate->elements, code->val.str.start,
|
|
code->val.str.len, &tmp) >= 0)
|
|
{
|
|
element_t *runp = (element_t *) tmp;
|
|
|
|
here_weight = runp->this_weight;
|
|
}
|
|
else if (find_entry (&collate->symbols, code->val.str.start,
|
|
code->val.str.len, &tmp) >= 0)
|
|
{
|
|
here_weight = (unsigned int) tmp;
|
|
}
|
|
else
|
|
{
|
|
if (verbose)
|
|
lr_error (lr, _("unknown symbol `%.*s': line ignored"),
|
|
(int) code->val.str.len, code->val.str.start);
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
|
|
/* When we currently work on a collation symbol we do not expect any
|
|
weight. */
|
|
if (collate->kind == symbol)
|
|
{
|
|
lr_error (lr, _("\
|
|
specification of sorting weight for collation symbol does not make sense"));
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
|
|
/* Add to the current collection of weights. */
|
|
if (collate->nweight >= collate->nweight_max)
|
|
{
|
|
collate->nweight_max *= 2;
|
|
collate->weight = (unsigned int *) xrealloc (collate->weight,
|
|
collate->nweight_max);
|
|
}
|
|
|
|
/* If the weight is currently not known, we remember to patch the
|
|
resulting tables. */
|
|
if (here_weight == 0)
|
|
{
|
|
patch_t *newp;
|
|
|
|
newp = (patch_t *) obstack_alloc (&collate->element_mem,
|
|
sizeof (patch_t));
|
|
newp->fname = lr->fname;
|
|
newp->lineno = lr->lineno;
|
|
newp->token = (const char *) obstack_copy0 (&collate->element_mem,
|
|
code->val.str.start,
|
|
code->val.str.len);
|
|
newp->where.idx = collate->nweight++;
|
|
newp->next = collate->current_patch;
|
|
collate->current_patch = newp;
|
|
}
|
|
else
|
|
collate->weight[collate->nweight++] = here_weight;
|
|
++collate->weight_cnt[collate->weight_idx];
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
collate_next_weight (struct linereader *lr, struct localedef_t *locale)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
|
|
if (collate->kind == symbol)
|
|
{
|
|
lr_error (lr, _("\
|
|
specification of sorting weight for collation symbol does not make sense"));
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
|
|
++collate->weight_idx;
|
|
if (collate->weight_idx >= collate->nrules)
|
|
{
|
|
lr_error (lr, _("too many weights"));
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
collate_simple_weight (struct linereader *lr, struct localedef_t *locale,
|
|
struct token *code, struct charset_t *charset)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
unsigned int value = 0;
|
|
|
|
/* There current tokens can be `IGNORE', `...', or a string. */
|
|
switch (code->tok)
|
|
{
|
|
case tok_ignore:
|
|
/* This token is allowed in all situations. */
|
|
value = IGNORE_CHAR;
|
|
break;
|
|
|
|
case tok_ellipsis:
|
|
/* The ellipsis is only allowed for the `...' or `UNDEFINED'
|
|
entry. */
|
|
if (collate->kind != ellipsis && collate->kind != undefined)
|
|
{
|
|
lr_error (lr, _("\
|
|
`...' must only be used in `...' and `UNDEFINED' entries"));
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
value = ELLIPSIS_CHAR;
|
|
break;
|
|
|
|
case tok_string:
|
|
/* This can become difficult. We have to get the weights which
|
|
correspond to the single wide chars in the string. But some
|
|
of the `chars' might not be real characters, but collation
|
|
elements or symbols. And so the string decoder might have
|
|
signaled errors. The string at this point is not translated.
|
|
I.e., all <...> sequences are still there. */
|
|
{
|
|
char *runp = code->val.str.start;
|
|
void *tmp;
|
|
|
|
while (*runp != '\0')
|
|
{
|
|
char *startp = (char *) runp;
|
|
char *putp = (char *) runp;
|
|
wchar_t wch;
|
|
|
|
/* Lookup weight for char and store it. */
|
|
if (*runp == '<')
|
|
{
|
|
while (*++runp != '\0' && *runp != '>')
|
|
{
|
|
if (*runp == lr->escape_char)
|
|
if (*++runp == '\0')
|
|
{
|
|
lr_error (lr, _("unterminated weight name"));
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
*putp++ = *runp;
|
|
}
|
|
if (*runp == '>')
|
|
++runp;
|
|
|
|
if (putp == startp)
|
|
{
|
|
lr_error (lr, _("empty weight name: line ignored"));
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
|
|
wch = charset_find_value (&charset->char_table, startp,
|
|
putp - startp);
|
|
if (wch != ILLEGAL_CHAR_VALUE)
|
|
{
|
|
element_t *pelem;
|
|
|
|
if (find_entry (&collate->result, &wch, sizeof (wchar_t),
|
|
(void *)&pelem) < 0)
|
|
pelem = NULL;
|
|
|
|
while (pelem != NULL
|
|
&& (pelem->name[0] != wch
|
|
|| pelem->name[1] != L'\0'))
|
|
pelem = pelem->next;
|
|
|
|
value = pelem == NULL ? 0 : pelem->this_weight;
|
|
}
|
|
else if (find_entry (&collate->elements, startp, putp - startp,
|
|
&tmp) >= 0)
|
|
{
|
|
element_t *pelem = (element_t *) tmp;
|
|
|
|
value = pelem->this_weight;
|
|
}
|
|
else if (find_entry (&collate->symbols, startp, putp - startp,
|
|
&tmp) >= 0)
|
|
{
|
|
value = (unsigned int) tmp;
|
|
}
|
|
else
|
|
{
|
|
if (verbose)
|
|
lr_error (lr, _("unknown symbol `%.*s': line ignored"),
|
|
(int) (putp - startp), startp);
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
element_t *wp;
|
|
wchar_t wch;
|
|
|
|
if (*runp == lr->escape_char)
|
|
{
|
|
static const char digits[] = "0123456789abcdef";
|
|
const char *dp;
|
|
int base;
|
|
|
|
++runp;
|
|
if (_tolower (*runp) == 'x')
|
|
{
|
|
++runp;
|
|
base = 16;
|
|
}
|
|
else if (_tolower (*runp) == 'd')
|
|
{
|
|
++runp;
|
|
base = 10;
|
|
}
|
|
else
|
|
base = 8;
|
|
|
|
dp = strchr (digits, _tolower (*runp));
|
|
if (dp == NULL || (dp - digits) >= base)
|
|
{
|
|
illegal_char:
|
|
lr_error (lr, _("\
|
|
illegal character constant in string"));
|
|
lr_ignore_rest (lr, 0);
|
|
return -1;
|
|
}
|
|
wch = dp - digits;
|
|
++runp;
|
|
|
|
dp = strchr (digits, _tolower (*runp));
|
|
if (dp == NULL || (dp - digits) >= base)
|
|
goto illegal_char;
|
|
wch *= base;
|
|
wch += dp - digits;
|
|
++runp;
|
|
|
|
if (base != 16)
|
|
{
|
|
dp = strchr (digits, _tolower (*runp));
|
|
if (dp != NULL && (dp - digits < base))
|
|
{
|
|
wch *= base;
|
|
wch += dp - digits;
|
|
++runp;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
wch = (wchar_t) *runp++;
|
|
|
|
/* Lookup the weight for WCH. */
|
|
if (find_entry (&collate->result, &wch, sizeof (wch),
|
|
(void *)&wp) < 0)
|
|
wp = NULL;
|
|
|
|
while (wp != NULL
|
|
&& (wp->name[0] != wch || wp->name[1] != L'\0'))
|
|
wp = wp->next;
|
|
|
|
value = wp == NULL ? 0 : wp->this_weight;
|
|
|
|
/* To get the correct name for the error message. */
|
|
putp = runp;
|
|
|
|
/**************************************************\
|
|
|* I know here is something wrong. Characters in *|
|
|
|* the string which are not in the <...> form *|
|
|
|* cannot be declared forward for now!!! *|
|
|
\**************************************************/
|
|
}
|
|
|
|
/* Store in weight array. */
|
|
if (collate->nweight >= collate->nweight_max)
|
|
{
|
|
collate->nweight_max *= 2;
|
|
collate->weight
|
|
= (unsigned int *) xrealloc (collate->weight,
|
|
collate->nweight_max);
|
|
}
|
|
|
|
if (value == 0)
|
|
{
|
|
patch_t *newp;
|
|
|
|
newp = (patch_t *) obstack_alloc (&collate->element_mem,
|
|
sizeof (patch_t));
|
|
newp->fname = lr->fname;
|
|
newp->lineno = lr->lineno;
|
|
newp->token
|
|
= (const char *) obstack_copy0 (&collate->element_mem,
|
|
startp, putp - startp);
|
|
newp->where.idx = collate->nweight++;
|
|
newp->next = collate->current_patch;
|
|
collate->current_patch = newp;
|
|
}
|
|
else
|
|
collate->weight[collate->nweight++] = value;
|
|
++collate->weight_cnt[collate->weight_idx];
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
default:
|
|
assert (! "should not happen");
|
|
}
|
|
|
|
|
|
if (collate->nweight >= collate->nweight_max)
|
|
{
|
|
collate->nweight_max *= 2;
|
|
collate->weight = (unsigned int *) xrealloc (collate->weight,
|
|
collate->nweight_max);
|
|
}
|
|
|
|
collate->weight[collate->nweight++] = value;
|
|
++collate->weight_cnt[collate->weight_idx];
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
collate_end_weight (struct linereader *lr, struct localedef_t *locale)
|
|
{
|
|
struct locale_collate_t *collate = locale->categories[LC_COLLATE].collate;
|
|
element_t *pelem = collate->current_element;
|
|
|
|
if (collate->kind == symbol)
|
|
{
|
|
/* We don't have to do anything. */
|
|
collate->was_ellipsis = 0;
|
|
return;
|
|
}
|
|
|
|
if (collate->kind == ellipsis)
|
|
{
|
|
/* Before the next line is processed the ellipsis is handled. */
|
|
collate->was_ellipsis = 1;
|
|
return;
|
|
}
|
|
|
|
assert (collate->kind == character || collate->kind == element
|
|
|| collate->kind == undefined);
|
|
|
|
/* Fill in the missing weights. */
|
|
while (++collate->weight_idx < collate->nrules)
|
|
{
|
|
collate->weight[collate->nweight++] = pelem->this_weight;
|
|
++collate->weight_cnt[collate->weight_idx];
|
|
}
|
|
|
|
/* Now we know how many ordering weights the current
|
|
character/element has. Allocate room in the element structure
|
|
and copy information. */
|
|
pelem->ordering_len = collate->nweight;
|
|
|
|
/* First we write an array with the number of values for each
|
|
weight. */
|
|
obstack_grow (&collate->element_mem, collate->weight_cnt,
|
|
collate->nrules * sizeof (unsigned int));
|
|
|
|
/* Now the weights itselves. */
|
|
obstack_grow (&collate->element_mem, collate->weight,
|
|
collate->nweight * sizeof (unsigned int));
|
|
|
|
/* Get result. */
|
|
pelem->ordering = obstack_finish (&collate->element_mem);
|
|
|
|
/* Now we handle the "patches". */
|
|
while (collate->current_patch != NULL)
|
|
{
|
|
patch_t *this_patch;
|
|
|
|
this_patch = collate->current_patch;
|
|
|
|
this_patch->where.pos = &pelem->ordering[collate->nrules
|
|
+ this_patch->where.idx];
|
|
|
|
collate->current_patch = this_patch->next;
|
|
this_patch->next = collate->all_patches;
|
|
collate->all_patches = this_patch;
|
|
}
|
|
|
|
/* Set information for next round. */
|
|
collate->was_ellipsis = 0;
|
|
if (collate->kind != undefined)
|
|
collate->last_char = pelem->name[0];
|
|
}
|